甲、乙兩人各進(jìn)行10次射擊比賽,平均成績(jī)均為8環(huán),方差分別是:S2=3,S2=1.5,則射擊成績(jī)較穩(wěn)定的是
 
(選填“甲”或“乙”).
考點(diǎn):方差
專題:
分析:根據(jù)方差的意義可作出判斷.方差是用來衡量一組數(shù)據(jù)波動(dòng)大小的量,方差越小,表明這組數(shù)據(jù)分布比較集中,各數(shù)據(jù)偏離平均數(shù)越小,即波動(dòng)越小,數(shù)據(jù)越穩(wěn)定.
解答:解:∵S2=3,S2=1.5,
S2S2
∴射擊成績(jī)較穩(wěn)定的是乙;
故答案為:乙.
點(diǎn)評(píng):本題考查方差的意義.方差是用來衡量一組數(shù)據(jù)波動(dòng)大小的量,方差越大,表明這組數(shù)據(jù)偏離平均數(shù)越大,即波動(dòng)越大,數(shù)據(jù)越不穩(wěn)定;反之,方差越小,表明這組數(shù)據(jù)分布比較集中,各數(shù)據(jù)偏離平均數(shù)越小,即波動(dòng)越小,數(shù)據(jù)越穩(wěn)定.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

化簡(jiǎn):
2x-6
4-4x+x2
÷
3-x
x2+x-6
-
x
2-x
并求值,x是方程2x2-x-15=0的解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

某商家獨(dú)家銷售具有地方特色的某種商品,每件進(jìn)價(jià)為40元.經(jīng)過市場(chǎng)調(diào)查,一周的銷售量y件與銷售單價(jià)x(x≥50)元/件的關(guān)系如下表:
銷售單價(jià)x(元/件) 55 60 70 75
一周的銷售量y(件) 450 400 300 250
(1)直接寫出y與x的函數(shù)關(guān)系式;
(2)設(shè)一周的銷售利潤(rùn)為S元,請(qǐng)求出S與x的函數(shù)關(guān)系式,并確定當(dāng)銷售單價(jià)在什么范圍內(nèi)變化時(shí),一周的銷售利潤(rùn)隨著銷售單價(jià)的增大而增大?
(3)雅安地震牽動(dòng)億萬人民的心,商家決定將商品一周的銷售利潤(rùn)全部寄往災(zāi)區(qū),在商家購(gòu)進(jìn)該商品的貸款不超過16000元情況下,請(qǐng)你求出該商家最大捐款數(shù)額是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,直線y=-2x+b與反比例函數(shù)y=
k
x
交于點(diǎn)A、B,與x軸交于點(diǎn)C.
(1)若A(-3,m)、B(1,n).直接寫出不等式-2x+b>
k
x
的解.
(2)求sin∠OCB的值.
(3)若CB-CA=5,求直線AB的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△ABC是等邊三角形,AC=6,以點(diǎn)A為圓心,AB長(zhǎng)為半徑畫弧DE,若∠1=∠2,則弧DE的長(zhǎng)為
 
.(結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知雙曲線y=
k
x
(k>0)經(jīng)過直角三角形OAB的斜邊OB的中點(diǎn)D,與直角邊AB相交于點(diǎn)C.當(dāng)BC=OA=6時(shí),k=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,在平面直角坐標(biāo)系中,兩個(gè)全等的直角三角形的直角頂點(diǎn)及一條直角邊重合,點(diǎn)A在第二象限內(nèi),點(diǎn)B、點(diǎn)C在x軸的負(fù)半軸上,∠CAO=30°,OA=4.將△ACB繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)到△A′CB′的位置如圖2,其中A′C交直線OA于點(diǎn)E,A′B′分別交直線OA、CA于點(diǎn)F、G,當(dāng)△COE的面積為
3
時(shí),則圖象過點(diǎn)B′的反比例函數(shù)表達(dá)式為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

折疊三角形紙片ABC,使點(diǎn)A落在BC邊上的點(diǎn)F,且折痕DE∥BC,若∠A=75°,∠C=60°,則∠BDF的度數(shù)為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,直線y=mx與雙曲線y=
k
x
交于A,B兩點(diǎn),過點(diǎn)A作AM⊥x軸,垂足為點(diǎn)M,連接BM,若S△ABM=4,則k的值為( 。
A、-2B、-4C、4D、-8

查看答案和解析>>

同步練習(xí)冊(cè)答案