【題目】在數(shù)學(xué)課上,老師提出利用尺規(guī)作圖完成下面問(wèn)題:已知:△ABC是⊙O的內(nèi)接三角形.求作:△ABC中∠BAC的平分線.
小明的作法如下:
(1)作BC邊的垂直平分線DE,交BC于點(diǎn)D,交弧BC于點(diǎn)E;
(2)連接AE,交BC邊于點(diǎn)F;則線段AF為所求△ABC中∠BAC的平分線.根據(jù)小明設(shè)計(jì)的尺規(guī)作圖過(guò)程,
①在圖中補(bǔ)全圖形(尺規(guī)作圖,保留作圖痕跡);
②完成下面的證明.
證明:∵OB=OC,DE是線段BC的垂直平分線
∴圓心O在直線DE上( ).
∵DE⊥BC,
∴( ).
∴∠BAE=∠CAE( ),
∴線段AF為所求△ABC中∠BAC的平分線.
【答案】到線段兩端點(diǎn)距離相等的點(diǎn)在線段的垂直平分線上;垂徑定理;圓周角定理
【解析】
(1)根據(jù)幾何語(yǔ)言畫出對(duì)應(yīng)的幾何圖形;
(2)根據(jù)線段垂直平分線的性質(zhì)得到DE⊥BC,則利用垂徑定理得到弧BE=弧CE,然后根據(jù)圓周角定理得到∠BAE=∠CAE.
(1)如圖,
(2)證明:∵OB=OC,DE是線段BC的垂直平分線
∴圓心O在直線DE上(到線段兩端點(diǎn)距離相等的點(diǎn)在線段的垂直平分線上).
∵DE⊥BC,
∴(垂徑定理).
∴∠BAE=∠CAE(圓周角定理),
∴線段AF為所求△ABC中∠BAC的平分線.
故答案為到線段兩端點(diǎn)距離相等的點(diǎn)在線段的垂直平分線上;垂徑定理;圓周角定理.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某超市預(yù)測(cè)某飲料有發(fā)展前途,用1600元購(gòu)進(jìn)一批飲料,面市后果然供不應(yīng)求,又用6000元購(gòu)進(jìn)這批飲料,第二批飲料的數(shù)量是第一批的3倍,但單價(jià)比第一批貴2元.
(1)第一批飲料進(jìn)貨單價(jià)多少元?
(2)若二次購(gòu)進(jìn)飲料按同一價(jià)格銷售,兩批全部售完后,獲利不少于1200元,那么銷售單價(jià)至少為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,我們不妨將橫坐標(biāo),縱坐標(biāo)均為整數(shù)的點(diǎn)稱之為“中國(guó)結(jié)”。
(1)求函數(shù)y=x+2的圖像上所有“中國(guó)結(jié)”的坐標(biāo);
(2)求函數(shù)y=(k≠0,k為常數(shù))的圖像上有且只有兩個(gè)“中國(guó)結(jié)”,試求出常數(shù)k的值與相應(yīng)“中國(guó)結(jié)”的坐標(biāo);
(3)若二次函數(shù)y=(k為常數(shù))的圖像與x軸相交得到兩個(gè)不同的“中國(guó)結(jié)”,試問(wèn)該函數(shù)的圖像與x軸所圍成的平面圖形中(含邊界),一共包含有多少個(gè)“中國(guó)結(jié)”?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線L上有三個(gè)正方形a,b,c,若a,c的面積分別為1和9,則b的面積為( )
A.8 B.9 C.10 D.11
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線與軸、軸分別交于兩點(diǎn),拋物線經(jīng)過(guò)點(diǎn),與軸另一交點(diǎn)為,頂點(diǎn)為.
(1)求拋物線的解析式;
(2)在軸上找一點(diǎn),使的值最小,求的最小值;
(3)在拋物線的對(duì)稱軸上是否存在一點(diǎn),使得?若存在,求出點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知如圖,△ABC中AB=AC,AE是角平分線,BM平分∠ABC交AE于點(diǎn)M,經(jīng)過(guò)B、M兩點(diǎn)的⊙O交BC于G,交AB于點(diǎn)F,F(xiàn)B恰為⊙O的直徑.
(1)求證:AE與⊙O相切;
(2)當(dāng)BC=6,cosC=,求⊙O的直徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知PA與⊙O相切于點(diǎn)A,B、C是⊙O上的兩點(diǎn)
(1)如圖①,PB與⊙O相切于點(diǎn)B,AC是⊙O的直徑若∠BAC=25°;求∠P的大小
(2)如圖②,PB與⊙O相交于點(diǎn)D,且PD=DB,若∠ACB=90°,求∠P的大小
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】圖1、圖2是兩張形狀和大小完全相同的方格紙,方格紙中每個(gè)小正方形的邊長(zhǎng)均為1,線段AC的兩個(gè)端點(diǎn)均在小正方形的頂點(diǎn)上.
(1)在圖1中畫一個(gè)以線段AC為對(duì)角線、周長(zhǎng)為20的四邊形ABCD,且點(diǎn)B和點(diǎn)D均在小正方形的頂點(diǎn)上,并求出BD的長(zhǎng);
(2)在圖2中畫一個(gè)以線段AC為對(duì)角線、面積為10的四邊形ABCD,且點(diǎn)B和點(diǎn)D均在小正方形的頂點(diǎn)上.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y=2x+6與反比例函數(shù)的圖象交于點(diǎn)A(1,m),與x軸交于點(diǎn)B,平行于x軸的直線y=n(0<n<6)交反比例函數(shù)的圖象于點(diǎn)M,交AB于點(diǎn)N,連接BM.
(1)求m的值和反比例函數(shù)的表達(dá)式;
(2)觀察圖象,直接寫出當(dāng)x>0時(shí),不等式2x+6-<0的解集;
(3)當(dāng)n為何值時(shí),△BMN的面積最大?最大值是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com