【題目】如圖,正比例函數(shù)y1=k1x與反比例函數(shù)y2= 相交于A、B點.已知點A的坐標為A(4,n),BD⊥x軸于點D,且SBDO=4.過點A的一次函數(shù)y3=k3x+b與反比例函數(shù)的圖象交于另一點C,與x軸交于點E(5,0).
(1)求正比例函數(shù)y1、反比例函數(shù)y2和一次函數(shù)y3的解析式;
(2)結合圖象,求出當k3x+b> >k1x時x的取值范圍.

【答案】
(1)解:∵SBDO=4.

∴k2=2×4=8,

∴反比例函數(shù)解析式;y2=

∵點A(4,n)在反比例函數(shù)圖象上,

∴4n=8,

n=2,

∴A點坐標是(4,2),

∵A點(4,2)在正比例函數(shù)y1=k1x圖象上,

∴2=k14,

k1= ,

∴正比例函數(shù)解析式是:y1= x,

∵一次函數(shù)y3=k3x+b過點A(4,2),E(5,0),

解得:

∴一次函數(shù)解析式為:y3=﹣2x+10


(2)解:聯(lián)立y3=﹣2x+10與y2= ,

消去y得:﹣2x+10= ,解得x1=1,x2=4,

另一交點C的坐標是(1,8),

點A(4,2)和點B關于原點中心對稱,

∴B(﹣4,﹣2),

∴由觀察可得x的取值范圍是:x<﹣4,或1<x<4


【解析】(1)首先根據(jù)△BOD的面積求出反比例函數(shù)解析式;再利用反比例函數(shù)圖象上的點的特征求出A點坐標,由于正比例函數(shù)經(jīng)過A點;再利用代定系數(shù)法求出正比例函數(shù)解析式;一次函數(shù)y3=k3x+b過點A(4,2),E(5,0),再次利用代定系數(shù)法求出一次函數(shù)解析式;(2)點C是一次函數(shù)y3=﹣2x+10與反比例函數(shù)解析式y(tǒng)2= 的交點,用方程﹣2x+10= 先求出C的坐標,再求出B點坐標,最后結合圖象可以看出答案.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知4x2mx+25是完全平方式,則常數(shù)m的值為(  )

A.10B.±10C.20D.±20

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】10分) 如圖所示,求∠A+∠B+∠C+∠D+∠E+∠F的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,三角形A′B′C′是三角形ABC經(jīng)過平移得到的,A-4,-1),B-5-4),三角形ABC中任意一點Px1y1)平移后的對應點為P′x1+6,y1+4.

1)請寫出三角形ABC平移的過程;

2)分別寫出點A′,B′,C′的坐標;

3)求三角形A′B′C′的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠BAC=90°,AC=2AB,點D是AC的中點.將一塊銳角為45°的直角三角板如圖放置,使三角板斜邊的兩個端點分別與A、D重合,連接BE、EC.試猜想線段BE和EC的數(shù)量及位置關系,并證明你的猜想.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列不能作為判定四邊形ABCD為平行四邊形的條件的是(

A. ABCD,ADBC B. ABCD

C. ABCDAD∥BC D. AB∥CD,AD∥BC

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在直角梯形ABCD中,AD∥BC,B90°,AD24 ㎝,BC26㎝,動點P從點A開始沿AD邊以每秒1㎝的速度向D點運動,動點Q從點C開始沿CB邊以每秒3㎝的速度向B運動,P,Q分別從AC同時出發(fā),當其中一點到達端點時,另一點也隨之停止運動,設運動時間為t s

1t為何值時,四邊形PQCD為平行四邊形?

2t為何值時,四邊形PQCD為等腰梯形?

3t為何值時,四邊形ABQP為矩形?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,D是BC上任意一點,過D分別向AB,AC引垂線,垂足分別為E,F(xiàn),CG是AB邊上的高.

(1)當D點在BC的什么位置時,DE=DF?請說明理由.

(2)DE,DF,CG的長之間存在著怎樣的等量關系?并說明理由.

(3)若D在底邊BC的延長線上,(2)中的結論還成立嗎?若不成立,又存在怎樣的關系?并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個長方體的長、寬、高分別是2x3、x2、x,則它的表面積為_____

查看答案和解析>>

同步練習冊答案