如圖,兩直線(xiàn)相交于一點(diǎn),若∠1+∠3=80°,則∠2=


  1. A.
    80°
  2. B.
    100°
  3. C.
    120°
  4. D.
    140°
D
分析:根據(jù)∠1,∠3互為對(duì)頂角,且∠1+∠3=80°,可求得∠1,∠3的度數(shù),繼而根據(jù)鄰補(bǔ)角的定義求出∠2的度數(shù).
解答:∵∠1,∠3互為對(duì)頂角,∠1+∠3=80°,
∴∠1=∠3=40°,
∴∠2=180°-∠1=180°-40°=140°.
故選D.
點(diǎn)評(píng):本題考查了對(duì)頂角和鄰補(bǔ)角的知識(shí),解答本題的關(guān)鍵是掌握對(duì)頂角相等以及鄰補(bǔ)角互補(bǔ)的性質(zhì).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

“三等分角”是數(shù)學(xué)史上一個(gè)著名的問(wèn)題,但僅用尺規(guī)不可能“三等分角”.下面是數(shù)學(xué)家帕普斯借助函數(shù)給出的一種“三等分銳角”的方法(如圖):將給定的銳角∠AOB置于直角坐標(biāo)系中,邊OB在x軸上、邊OA與函數(shù)y=
1
x
的圖象交于點(diǎn)P,以P為圓心、以2OP為半徑作弧交圖象于點(diǎn)R.分別過(guò)點(diǎn)P和R作x軸和y軸的平行線(xiàn),兩直線(xiàn)相交于點(diǎn)M,連接OM得到∠MOB,則∠MOB=
1
3
∠AOB.要明白帕普斯的方法,請(qǐng)研究以下問(wèn)題:
(1)設(shè)P(a,
1
a
)、R(b,
1
b
),求直線(xiàn)OM對(duì)應(yīng)的函數(shù)表達(dá)式(用含a,b的代數(shù)式表示);
(2)分別過(guò)點(diǎn)P和R作y軸和x軸的平行線(xiàn),兩直線(xiàn)相交于點(diǎn)Q.請(qǐng)說(shuō)明Q點(diǎn)在直線(xiàn)OM上,并據(jù)此證明精英家教網(wǎng)∠MOB=
1
3
∠AOB;
(3)應(yīng)用上述方法得到的結(jié)論,你如何三等分一個(gè)鈍角(用文字簡(jiǎn)要說(shuō)明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1)“三等分角”是數(shù)學(xué)史上一個(gè)著名問(wèn)題,但數(shù)學(xué)家已經(jīng)證明,僅用尺規(guī)不可能“三等分任意角”.但對(duì)于特定度數(shù)的已知角,如90°角、45°角等,是可以用尺規(guī)進(jìn)行三等分的.如圖a,∠AOB=90°,我們?cè)谶匫B上取一點(diǎn)C,用尺規(guī)以O(shè)C為一邊向∠AOB內(nèi)部作等邊△OCD,作射線(xiàn)OD,再用尺規(guī)作出∠DOB的角平分線(xiàn)OE,則射線(xiàn)OD、OE將∠AOB三等分.仔細(xì)體會(huì)一下其中的道理,然后用尺規(guī)把圖b中的∠MON三等分(已知∠MON=45°).(不需寫(xiě)作法,但需保留作圖痕跡,允許適當(dāng)添加文字的說(shuō)明)
精英家教網(wǎng)
(2)數(shù)學(xué)家帕普斯借助函數(shù)給出了一種“三等分銳角”的方法(如圖c):將給定的銳角∠AOB置于直角坐標(biāo)系中,邊OB在x軸上、邊OA與函數(shù)y=
1
x
的圖象交于點(diǎn)P,以P為圓心、2OP長(zhǎng)為半徑作弧交圖象于點(diǎn)R.分別過(guò)點(diǎn)P和R作x軸和y軸的平行線(xiàn),兩直線(xiàn)相交于點(diǎn)M,連接OM得到∠MOB,則∠MOB=
1
3
∠AOB.要明白帕普斯的方法,請(qǐng)研究以下問(wèn)題:
①設(shè)P(a,
1
a
)、R(b,
1
b
),求直線(xiàn)OM對(duì)應(yīng)的函數(shù)關(guān)系式(用含a、b的代數(shù)式表示).
②分別過(guò)點(diǎn)P和R作y軸和x軸的平行線(xiàn),兩直線(xiàn)相交于點(diǎn)Q.請(qǐng)說(shuō)明Q點(diǎn)在直線(xiàn)OM上,并據(jù)此證明∠MOB=
1
3
∠AOB.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,直線(xiàn)l1的方程為y=-x+1,直線(xiàn)l2的方程為y=x+5,且兩直線(xiàn)相交于點(diǎn)P,過(guò)點(diǎn)P的雙曲精英家教網(wǎng)線(xiàn)y=
k
x
與直線(xiàn)l1的另一交點(diǎn)為Q(3,m).
(1)求雙曲線(xiàn)的解析式.
(2)根據(jù)圖象直接寫(xiě)出不等式
k
x
>-x+1
的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖AB、CD相交于點(diǎn)O,AO=BO,AC∥DB.那么OC與OD相等嗎?說(shuō)明你的理由.
小明的解題過(guò)程如下,請(qǐng)你說(shuō)明每一步的理由.
解:OC=OD,理由如下:
∵AC∥DB  (已 知)
∴∠A=∠B∠C=∠D
(兩直線(xiàn)平行,內(nèi)錯(cuò)角相等)
(兩直線(xiàn)平行,內(nèi)錯(cuò)角相等)

在△AOC和△BOD中
∠A=∠B(      ) 
∠C=∠D(      )
AO=BO(     ) 

∴△AOC≌△BOD
(AAS)
(AAS)

∴OC=OD
(全等三角形對(duì)應(yīng)邊相等)
(全等三角形對(duì)應(yīng)邊相等)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2005年全國(guó)中考數(shù)學(xué)試題匯編《反比例函數(shù)》(05)(解析版) 題型:解答題

(2005•佛山)“三等分角”是數(shù)學(xué)史上一個(gè)著名的問(wèn)題,但僅用尺規(guī)不可能“三等分角”.下面是數(shù)學(xué)家帕普斯借助函數(shù)給出的一種“三等分銳角”的方法(如圖):將給定的銳角∠AOB置于直角坐標(biāo)系中,邊OB在x軸上、邊OA與函數(shù)y=的圖象交于點(diǎn)P,以P為圓心、以2OP為半徑作弧交圖象于點(diǎn)R.分別過(guò)點(diǎn)P和R作x軸和y軸的平行線(xiàn),兩直線(xiàn)相交于點(diǎn)M,連接OM得到∠MOB,則∠MOB=∠AOB.要明白帕普斯的方法,請(qǐng)研究以下問(wèn)題:
(1)設(shè)P(a,)、R(b,),求直線(xiàn)OM對(duì)應(yīng)的函數(shù)表達(dá)式(用含a,b的代數(shù)式表示);
(2)分別過(guò)點(diǎn)P和R作y軸和x軸的平行線(xiàn),兩直線(xiàn)相交于點(diǎn)Q.請(qǐng)說(shuō)明Q點(diǎn)在直線(xiàn)OM上,并據(jù)此證明∠MOB=∠AOB;
(3)應(yīng)用上述方法得到的結(jié)論,你如何三等分一個(gè)鈍角(用文字簡(jiǎn)要說(shuō)明).

查看答案和解析>>

同步練習(xí)冊(cè)答案