【題目】如圖,圓柱的高為,底面半徑為,在圓柱下底面的點(diǎn)處有一只螞蟻,它想吃到上底面處的食物,已知四邊形的邊、恰好是上、下底面的直徑.為:螞蟻至少要爬行多少路程才能食到食物?
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線AB∥CD,直線EF與AB,CD分別相交于點(diǎn)E,F.
(1)如圖1,若∠1=60°,求∠2=__________;∠3=__________.
(2)若點(diǎn)P是平面內(nèi)的一個(gè)動(dòng)點(diǎn),連結(jié)PE,PF,探索∠EPF,∠PEB,∠PFD三個(gè)角之間的關(guān)系.
①當(dāng)點(diǎn)P在圖2的位置時(shí),可得∠EPF=∠PEB+∠PFD. 理由如下:
如圖2,過(guò)點(diǎn)P作MN∥AB,則∠EPM=∠PEB(__________)
∵AB∥CD(已知) MN∥AB(作圖)
∴MN∥CD(__________)
∴∠MPF=∠PFD (__________)
∴__________+__________=∠PEB+∠PFD(等式的性質(zhì))
即:∠EPF=∠PEB+∠PFD.請(qǐng)補(bǔ)充完整說(shuō)理過(guò)程(填寫理由或數(shù)學(xué)式)
②當(dāng)點(diǎn)P在圖3的位置時(shí),此時(shí)∠EPF=80°,∠PEB=156°,則∠PFD=__________;
③當(dāng)點(diǎn)P在圖4的位置時(shí),寫出∠EPF,∠PEB,∠PFD三個(gè)角之間的關(guān)系并證明(每一步必須注明理由).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,AD=BC且AD∥BC,AB=5,AD=3,AE平分∠DAB交BC的延長(zhǎng)線于F點(diǎn),則CF=_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:OB、OC、OM、ON是∠AOD內(nèi)的射線.
(1)如圖1,若∠AOD=156°,OM平分∠AOB,ON平分∠BOD,∠BOD=96°,則∠MON的度數(shù)為 .
(2)如圖2,若∠AOD=m°,∠NOC=23°,OM平分∠AOB,ON平分∠BOD,求∠COM的度數(shù)(用m的式子表示);
(3)如圖3,若∠AOD=156°,∠BOC=22°,∠AOB=30°,OM平分∠AOC,ON平分∠BOD,當(dāng)∠BOC在∠AOD內(nèi)繞著點(diǎn)O以2°/秒的速度逆時(shí)針旋轉(zhuǎn)t秒時(shí),∠AOM和∠DON中的一個(gè)角的度數(shù)恰好是另一個(gè)角的度數(shù)的兩倍,求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在長(zhǎng)方形ABCD中,AB=CD=8cm,BC=14cm,點(diǎn)P從點(diǎn)B出發(fā),以2cm/秒的速度沿BC向點(diǎn)C運(yùn)動(dòng),設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒:
(1)BP= cm(用t的代數(shù)式表示)
(2)當(dāng)t為何值時(shí),ABPDCP?
(3)當(dāng)點(diǎn)P從點(diǎn)B開始運(yùn)動(dòng),同時(shí),點(diǎn)Q從點(diǎn)C出發(fā),以v cm/秒的速度沿CD向點(diǎn)D運(yùn)動(dòng),是否存在這樣v的值,使得ABP與PQC全等?若存在,請(qǐng)求出v的值;若不存在,請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=15,BC=14,AC=13,求△ABC的面積. 某學(xué)習(xí)小組經(jīng)過(guò)合作交流,給出了下面的解題思路,請(qǐng)你按照他們的解題思路,完成解答過(guò)程.
(1)作AD⊥BC于D,設(shè)BD=x,用含x的代數(shù)式表示CD,則CD=________;
(2)請(qǐng)根據(jù)勾股定理,利用AD作為“橋梁”建立方程,并求出x的值;
(3)利用勾股定理求出AD的長(zhǎng),再計(jì)算三角形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們知道,可以理解為,它表示:數(shù)軸上表示數(shù)的點(diǎn)到原點(diǎn)的距離,這是絕對(duì)值的幾何意義.進(jìn)一步地,數(shù)軸上的兩個(gè)點(diǎn),分別用數(shù)表示,那么兩點(diǎn)之間的距離為,反過(guò)來(lái),式子的幾何意義是:數(shù)軸上表示數(shù)的點(diǎn)和表示數(shù)的點(diǎn)之間的距離.利用此結(jié)論,回答以下問(wèn)題:
(1)數(shù)軸上表示數(shù)8的點(diǎn)和表示數(shù)3的點(diǎn)之間的距離是_________,數(shù)軸上表示數(shù)的點(diǎn)和表示數(shù)的點(diǎn)之間的距離是__________.
(2)數(shù)軸上點(diǎn)用數(shù)表示,若,那么的值為_________.
(3)數(shù)軸上點(diǎn)用數(shù)表示:
①若,那么的值是________.
②當(dāng)時(shí),數(shù)的取值范圍是________,這樣的整數(shù)有________個(gè).
③有最小值,最小值是___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖,在矩形ABCD中.點(diǎn)O在邊AB上,∠AOC=∠BOD.求證:AO=OB.
(2)如圖,AB是的直徑,PA與相切于點(diǎn)A,OP與相交于點(diǎn)C,連接CB,∠OPA=40°,求∠ABC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(10分)如圖①,將兩塊全等的三角板拼在一起,其中△ABC的邊BC在直線l上,AC⊥BC且AC = BC;△EFP的邊FP也在直線l上,邊EF與邊AC重合,EF⊥FP且EF = FP。
(1)在圖①中,請(qǐng)你通過(guò)觀察、測(cè)量,猜想并寫出AB與AP所滿足的數(shù)量關(guān)系和位置關(guān)系;
(2)將三角板△EFP沿直線l向左平移到圖②的位置時(shí),EP交AC于點(diǎn)Q,連接AP、BQ。猜想并寫出BQ與AP所滿足的數(shù)量關(guān)系和位置關(guān)系,并證明你的猜想;
(3)將三角板△EFP沿直線l向左平移到圖③的位置時(shí),EP的延長(zhǎng)線交AC的延長(zhǎng)線于點(diǎn)Q,連接AP、BQ。你認(rèn)為(2)中猜想的BQ與AP所滿足的數(shù)量關(guān)系和位置關(guān)系還成立嗎?若成立,給出證明;若不成立,請(qǐng)說(shuō)明理由。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com