【題目】已知:在RtABC中,C=90°,BC=1,AC=,點D是斜邊AB的中點,點E是邊AC上一點,則DE+BE的最小值為(  )

A. 2

B.

C.

D.

【答案】C

【解析】

B關(guān)于AC的對稱點B',連接B′D,易求∠ABB'=60°,則AB=AB',且△ABB'為等邊三角形,BE+DE=DE+EB'B'與直線AB之間的連接線段,其最小值為B'AB的距離=AC=,所以最小值為

解:作B關(guān)于AC的對稱點B',連接B′D,

∵∠ACB=90°,∠BAC=30°,

∴∠ABC=60°,

∵AB=AB',

∴△ABB'為等邊三角形,

∴BE+DE=DE+EB'B'與直線AB之間的連接線段,

∴最小值為B'AB的距離=AC=,

故選:C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖, 的直角邊 上一點,以 為半徑的 與斜邊 相切于點 ,交 于點 .已知 ,

(1)求 的長;
(2)求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點C在AB的延長線上,AD平分∠CAE交⊙O于點D,且AE⊥CD,垂足為點E.
(1)求證:直線CE是⊙O的切線.
(2)若BC=3,CD=3 ,求弦AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】AB、C、D、E、F六個球隊進(jìn)行單循環(huán)比賽(每兩隊之間賽一場,比賽結(jié)果必須分出勝負(fù)),每天同時在三個場地各進(jìn)行一場比賽,前四天的積分表如下(EF的積分被遮擋):

1)根據(jù)積分榜,勝一場積幾分,負(fù)一場積幾分?

2)若E隊前四天積分比F隊多4分,問E、F兩隊前四天的戰(zhàn)績分別是幾勝幾負(fù)?

3)已知第一天BD對陣,第二天CE對陣,第三天DF對陣,第四天BC對陣,試分析第五天A和誰對陣比賽.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知A(﹣15),B42),C(﹣1,0)三點.點A關(guān)于原點O的對稱點A′,點B關(guān)于軸的對稱點為B′,點C關(guān)于軸的對稱點為C′.

1A′的坐標(biāo)為   ,B′的坐標(biāo)為   ,C′的坐標(biāo)為  .

2)建立平面直角坐標(biāo)系,描出以下三點A、B′、C′,并求AB′C′的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為美化校園,計劃對某一區(qū)域進(jìn)行綠化,安排甲.乙 兩個工程隊完成;已知甲隊每天能完成綠化面積是乙隊每天能完成綠化面積的2倍,并且在獨立完成面積為400 區(qū)域的綠化時,甲隊比乙隊少用4天,求甲.乙兩工程隊每天能完成綠化的面積分別是多少

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某開發(fā)區(qū)在一項工程招標(biāo)時,接到甲、乙兩個工程隊的投標(biāo)書,工程領(lǐng)導(dǎo)小組根據(jù)甲、乙兩隊的投標(biāo)書測算,可有三種施工方案:①甲隊單獨完成這項工程,剛好如 期完成;②乙隊單獨完成此項工程要比規(guī)定工期多用5天;③ ,剩下的工程由乙隊單獨做,也正好如期完工.小亮設(shè)規(guī)定的工期為x天,根據(jù)題意列出了方 程: ,則方案③中被墨水污染的部分應(yīng)該是( )
A.甲先做了4天
B.甲乙合作了4天
C.甲先做了工程的
D.甲乙合作了工程的

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市射擊隊為從甲、乙兩名運動員中選拔一人參加省比賽,對他們進(jìn)行了六次測試,測試成績?nèi)缦卤?/span>單位:環(huán)

1

2

3

4

5

6

10

9

8

8

10

9

10

10

8

10

7

9

根據(jù)表格中的數(shù)據(jù),可計算出甲、乙兩人的平均成績都是9環(huán).

1)分別計算甲、乙六次測試成績的方差;

2)根據(jù)數(shù)據(jù)分析的知識,你認(rèn)為選______名隊員參賽.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知平行四邊形中,垂直平分線段連接

1)求證:四邊形是菱形;

2)若的長.

查看答案和解析>>

同步練習(xí)冊答案