【題目】已知AB是⊙O的直徑,C,D是⊙O上AB同側(cè)兩點(diǎn),∠BAC=26°.
(Ⅰ)如圖1,若OD⊥AB,求∠ABC和∠ODC的大。
(Ⅱ)如圖2,過(guò)點(diǎn)C作⊙O的切線,交AB的延長(zhǎng)線于點(diǎn)E,若OD∥EC,求∠ACD的大。
【答案】(Ⅰ)∠ABC=64°,∠ODC=71°;(Ⅱ)∠ACD=19°.
【解析】
(I)連接OC,根據(jù)圓周角定理得到∠ACB=90°,根據(jù)三角形的內(nèi)角和得到∠ABC=65°,由等腰三角形的性質(zhì)得到∠OCD=∠OCA+∠ACD=70°,于是得到結(jié)論;
(II)如圖2,連接OC,根據(jù)圓周角定理和切線的性質(zhì)即可得到結(jié)論.
解:(Ⅰ)連接OC,
∵AB是⊙O的直徑,
∴∠ACB=90°,
∵∠BAC=26°,
∴∠ABC=64°,
∵OD⊥AB,
∴∠AOD=90°,
∴∠ACD=∠AOD=×90°=45°,
∵OA=OC,
∴∠OAC=∠OCA=26°,
∴∠OCD=∠OCA+∠ACD=71°,
∵OD=OC,
∴∠ODC=∠OCD=71°;
(Ⅱ)如圖2,連接OC,
∵∠BAC=26°,
∴∠EOC=2∠A=52°,
∵CE是⊙O的切線,
∴∠OCE=90°,
∴∠E=38°,
∵OD∥CE,
∴∠AOD=∠E=38°,
∴∠ACD=AOD=19°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2﹣2ax+(a>0)與y軸交于點(diǎn)A,過(guò)點(diǎn)A作x軸的平行線交拋物線于點(diǎn)M.P為拋物線的頂點(diǎn).若直線OP交直線AM于點(diǎn)B,且M為線段AB的中點(diǎn),則a的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位的小正方形,點(diǎn)A、B、C都是格點(diǎn)(每個(gè)小方格的頂點(diǎn)叫格點(diǎn)),其中A(1,8),B(3,8),C(4,7).
(1)△ABC外接圓圓心的坐標(biāo)為 ,半徑是 ;
(2)已知△ABC與△DEF(點(diǎn)D、E、F都是格點(diǎn))成位似圖形,位似中心M的坐標(biāo)是 ,△ABC與△DEF位似比為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校準(zhǔn)備采購(gòu)一批茶藝耗材和陶藝耗材.經(jīng)查詢,如果按照標(biāo)價(jià)購(gòu)買兩種耗材,當(dāng)購(gòu)買茶藝耗材的數(shù)量是陶藝耗材數(shù)量的2倍時(shí),購(gòu)買茶藝耗材共需要18000元,購(gòu)買陶藝耗材共需要12000元,且一套陶藝耗材單價(jià)比一套茶藝耗材單價(jià)貴150元.
(1)求一套茶藝耗材、一套陶藝耗材的標(biāo)價(jià)分別是多少元?
(2)學(xué)校計(jì)劃購(gòu)買相同數(shù)量的茶藝耗材和陶藝耗材.商家告知,因?yàn)橹苣陸c,茶藝耗材的單價(jià)在標(biāo)價(jià)的基礎(chǔ)上降價(jià)2元,陶藝素材的單價(jià)在標(biāo)價(jià)的基礎(chǔ)降價(jià)150元,該校決定增加采購(gòu)數(shù)量,實(shí)際購(gòu)買茶藝素材和陶藝素材的數(shù)量在原計(jì)劃基礎(chǔ)上分別增加了2.5%和,結(jié)果在結(jié)算時(shí)發(fā)現(xiàn),兩種耗材的總價(jià)相等,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,拋物線與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,對(duì)稱軸為直線x=2,點(diǎn)A的坐標(biāo)為(1,0).
(1)求該拋物線的表達(dá)式及頂點(diǎn)坐標(biāo);
(2)點(diǎn)P為拋物線上一點(diǎn)(不與點(diǎn)A重合),聯(lián)結(jié)PC.當(dāng)∠PCB=∠ACB時(shí),求點(diǎn)P的坐標(biāo);
(3)在(2)的條件下,將拋物線沿平行于軸的方向向下平移,平移后的拋物線的頂點(diǎn)為點(diǎn)D,點(diǎn)P關(guān)于x軸的對(duì)應(yīng)點(diǎn)為點(diǎn)Q,當(dāng)OD⊥DQ時(shí),求拋物線平移的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】把大小和形狀完全相同的6張卡片分成兩組,每組3張,分別標(biāo)上1、2、3,將這兩組卡片分別放入兩個(gè)盒子中攪勻,再?gòu)闹须S機(jī)抽取一張.
(1)試求取出的兩張卡片數(shù)字之和為奇數(shù)的概率;
(2)若取出的兩張卡片數(shù)字之和為奇數(shù),則甲勝;取出的兩張卡片數(shù)字之和為偶數(shù),則乙勝;試分析這個(gè)游戲是否公平?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,已知拋物線y=﹣x2+bx+c交y軸于點(diǎn)A(0,4),交x軸于點(diǎn)B(4,0),點(diǎn)P是拋物線上一動(dòng)點(diǎn),試過(guò)點(diǎn)P作x軸的垂線1,再過(guò)點(diǎn)A作1的垂線,垂足為Q,連接AP.
(1)求拋物線的函數(shù)表達(dá)式和點(diǎn)C的坐標(biāo);
(2)若△AQP∽△AOC,求點(diǎn)P的橫坐標(biāo);
(3)如圖2,當(dāng)點(diǎn)P位于拋物線的對(duì)稱軸的右側(cè)時(shí),若將△APQ沿AP對(duì)折,點(diǎn)Q的對(duì)應(yīng)點(diǎn)為點(diǎn)Q′,請(qǐng)直接寫(xiě)出當(dāng)點(diǎn)Q′落在坐標(biāo)軸上時(shí)點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某網(wǎng)店打出促銷廣告:最潮新款服裝30件,每件售價(jià)300元,若一次性購(gòu)買不超過(guò)10件時(shí),售價(jià)不變;若一次性購(gòu)買超過(guò)10件時(shí),每多買2件,所買的每件服裝的售價(jià)均降低6元.已知該服裝成本是每件200元.設(shè)顧客一次性購(gòu)買服裝x件時(shí),該網(wǎng)店從中獲利y元.
(1)求y與x的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍.
(2)顧客一次性購(gòu)買多少件時(shí),該網(wǎng)店從中獲利最多,并求出獲利的最大值?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,拋物線y = ax2+bx-3經(jīng)過(guò)A、B、C三點(diǎn),己知點(diǎn)A(-3,0)、C (1, 0).
(1)求此拋物線的解析式.
(2)點(diǎn)P是直線AB下方的拋物線上一動(dòng)點(diǎn)(不與A、B重合),
①過(guò)點(diǎn)F作x軸的垂線,垂足為D,交直線AB于點(diǎn)E,動(dòng)點(diǎn)P在什么位置時(shí),PE最大,求 出此時(shí)P點(diǎn)的坐標(biāo).
②如圖2,連接AP.以AP為邊作圖示一側(cè)的正方形APMN,當(dāng)它恰好有一個(gè)頂點(diǎn)落在拋物 線對(duì)稱軸上時(shí),求出對(duì)應(yīng)的P點(diǎn)的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com