【題目】如圖,在菱形ABCD中,tan∠ABC= ,P為AB上一點(diǎn),以PB為邊向外作菱形PMNB,連結(jié)DM,取DM中點(diǎn)E,連結(jié)AE,PE,則 的值為( )
A.
B.
C.
D.
【答案】C
【解析】解:如圖,延長AE交MP的延長線于F,作AH⊥PF于H.
∵AD∥CN∥PM,
∴∠ADE=∠EMF,
∵ED=EM,∠AED=∠MEF,
∴△AED≌△FEM,
∴AE=EF.AD=MF=AB,
∵PM=PB,
∴PA=PF,
∴PE⊥AF,∠APE=∠FPE,
∵∠APF=∠ABC,
∴tan∠APF=tan∠ABC= = ,設(shè)AH=4k,PH=3k,則PA=PF=5k,F(xiàn)H=2k,AF= =2 k,
∵ PFAH= AFPE,
∴PE=2 k,AE= k
∴AE:PE= k:2 =1:2,
所以答案是:C.
【考點(diǎn)精析】利用等腰三角形的性質(zhì)和勾股定理的概念對題目進(jìn)行判斷即可得到答案,需要熟知等腰三角形的兩個底角相等(簡稱:等邊對等角);直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC中,∠B=50°,∠C=70°,AD是△ABC的角平分線,DE⊥AB于E點(diǎn).
(1)求∠EDA的度數(shù);
(2)AB=10,AC=8,DE=3,求S△ABC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某體育用品商場采購員要到廠家批發(fā)購進(jìn)籃球和排球共100個,付款總額不得超過11815元.已知:廠家兩種球的批發(fā)價如(表)、商場在某兩天的零售信息如(表):
品名 | 廠家批發(fā)價(元/個) |
籃球 | 130 |
排球 | 100 |
(表)
籃球(個) | 排球(個) | 零售總價(元) | |
第一天 | 8 | 5 | 1880 |
第二天 | 6 | 10 | 2160 |
(表)
請解決以下問題:
(1)求出體育商場出售籃球和排球的零售單價.
(2)該采購員最多可從廠家購進(jìn)籃球多少個.
(3)若該商場把這100個球全部以零售價售出,為使商場的利潤不低于2580元,則采購員采購的方案有哪幾種?該商場最多可盈利__________元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們規(guī)定:a*b=,則下列等式中對于任意實(shí)數(shù) a、b、c 都成立的是( )
①a+(b*c)=(a+b)*(a+c) ②a*(b+c)=(a+b)*c
③a*(b+c)=(a*b)+(a*c) ④(a*b)+c= +(b*2c)
A. ①②③ B. ①②④ C. ①③④ D. ②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線經(jīng)過點(diǎn)A(﹣1,0),B(3,0),C(0,3)三點(diǎn).
(1)求此拋物線的解析式;
(2)若點(diǎn)M是線段BC上的點(diǎn)(不與B,C重合),過M作NM∥y軸交拋物線于N,設(shè)點(diǎn)M的橫坐標(biāo)為m,請用含m的代數(shù)式表示MN的長;
(3)在(2)的條件下,連接NB,NC,是否存在點(diǎn)M,使△BNC的面積最大?若存在,求m的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在與中,,,,,交于點(diǎn).下列結(jié)論正確的個數(shù)為()個
①;②;③;④;⑤.
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+3x交x軸正半軸于點(diǎn)A(6,0),頂點(diǎn)為M,對稱軸MB交x軸于點(diǎn)B,過點(diǎn)C(2,0)作射線CD交MB于點(diǎn)D(D在x軸上方),OE∥CD交MB于點(diǎn)E,EF∥x軸交CD于點(diǎn)F,作直線MF.
(1)求a的值及M的坐標(biāo);
(2)當(dāng)BD為何值時,點(diǎn)F恰好落在該拋物線上?
(3)當(dāng)∠DCB=45°時:
①求直線MF的解析式;
②延長OE交FM于點(diǎn)G,四邊形DEGF和四邊形OEDC的面積分別記為S1、S2 , 則S1:S2的值為(直接寫答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,點(diǎn)O為直線AB上一點(diǎn),過點(diǎn)O作射線OC,使∠AOC=60°.將一直角三角板MON的直角頂點(diǎn)放在點(diǎn)O處,一邊OM在射線OB上,另一邊ON在直線AB的下方.
(1)求∠CON的度數(shù);
(2)如圖2是將圖1中的三角板繞點(diǎn)O按每秒15°的速度沿逆時針方向旋轉(zhuǎn)一周的情況,在旋轉(zhuǎn)的過程中,第t秒時,三條射線OA、OC、OM構(gòu)成兩個相等的角,求此時的t值
(3)將圖1中的三角板繞點(diǎn)O順時針旋轉(zhuǎn)至圖3(使ON在∠AOC的外部),圖4(使ON在∠AOC的內(nèi)部)請分別探究∠AOM與∠NOC之間的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com