【題目】如圖,AB表示路燈,當身高為1.6米的小名站在離路燈1.6的D處時,他測得自己在路燈下的影長DE與身高CD相等,當小明繼續(xù)沿直線BD往前走到E點時,畫出此時小明的影子,并計算此時小明的影長.

【答案】解:如圖所示:

線段EG表示小明此時的影子;

根據(jù)題意得:BD=CD=DE=EF=1.6米,AB∥CD,

∴BE=3.2米,△CDE∽△ABE,

,即 ,

解得:AB=3.2米,

同理:△FEG∽△ABG,

,即 ,

解得:EG=3.2米;

答:此時小明的影長為3.2米.


【解析】燈A與小明一次所在位置CD的頂端C的連線與地面BD的延長線的相交于點GEG即為所求影子。易得△CDE∽△ABE可求得AB=3.2米,再利用△FEG∽△ABG,可求得小明現(xiàn)在的影長為3.2米。
【考點精析】根據(jù)題目的已知條件,利用相似三角形的應(yīng)用的相關(guān)知識可以得到問題的答案,需要掌握測高:測量不能到達頂部的物體的高度,通常用“在同一時刻物高與影長成比例”的原理解決;測距:測量不能到達兩點間的舉例,常構(gòu)造相似三角形求解.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】感知:分子、分母都是整式,并且分母中含有未知數(shù)的不等式叫做分式不等式.小亮在解分式不等式時,是這樣思考的:根據(jù)“兩數(shù)相除,同號得正,異號得負”,原分式不等式可轉(zhuǎn)化為下面兩個不等式組:①或②

解不等式組①,得x3,

解不等式組②,得

所以原分式不等式的解集為x3

探究:請你參考小亮思考問題的方法,解不等式

應(yīng)用:不等式(x3)(x+5)≤0的解集是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,邊長為2的正三角形ABO的邊OB在x軸上,將△ABO繞原點O逆時針旋轉(zhuǎn)30°得到三角形OA1B1 , 則點A1的坐標為( )

A.( ,1)
B.( ,-1)
C.(-1,
D.(2,1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:△ABC是等邊三角形.

(1)如圖,點DAB邊上,點EAC邊上,BDCEBECD交于點F試判斷BFCF的數(shù)量關(guān)系,并加以證明;

(2)點DAB邊上的一個動點,點EAC邊上的一個動點,且BDCE,BECD交于點F.若△BFD是等腰三角形,求∠FBD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點C、D在線段AB上,△PCD是等邊三角形,且△ACP∽△PDB,求∠APB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】合肥市某學(xué)校搬遷,教師和學(xué)生的寢室數(shù)量在增加,若該校今年準備建造三類不同的寢室,分別為單人間(供一個人住宿),雙人間(供兩個人住宿),四人間(供四個人住宿).因?qū)嶋H需要,單人間的數(shù)量在2030之間(包括2030),且四人間的數(shù)量是雙人間的5.

(1)2015年學(xué)校寢室數(shù)為64,2017年建成后寢室數(shù)為121,20152017年的平均增長率;

(2)若建成后的寢室可供600人住宿,求單人間的數(shù)量;

(3)若該校今年建造三類不同的寢室的總數(shù)為180,則該校的寢室建成后最多可供多少師生住宿?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知∠α和∠β互補,且∠α>∠β,下列表示角的式子:①90°-∠β;②∠α-90°;③(∠α+∠β);④(∠α-∠β).其中能表示∠β的余角的有( )個.

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小明將兩塊完全相同的直角三角形紙片的直角頂點C疊放在一起,若保持△BCD不動,將△ACE繞直角頂點C旋轉(zhuǎn).

1)如圖1,如果CD平分∠ACE,那么CE是否平分∠BCD?答:______(填寫“是”或“否”);

2)如圖1,若∠DCE=35,則∠ACB=______;若∠ACB=140,則∠DCE=______;

3)當△ACE繞直角頂點C旋轉(zhuǎn)到如圖1的位置時,猜想∠ACB與∠DCE的數(shù)量關(guān)系,并說明理由;

4)當△ACE繞直角頂點C旋轉(zhuǎn)到如圖2的位置時,上述關(guān)系是否依然成立,請說明理由;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=4,AD=6,點F是AB的中點,E為BC邊上一點,且EF⊥ED,連結(jié)DF,M為DF的中點,連結(jié)MA,ME.若AM⊥ME,則AE的長為( )

A.5
B.
C.
D.

查看答案和解析>>

同步練習冊答案