【題目】如圖,∠BAC=∠ACD=90°,∠ABC=∠ADC,CE⊥AD,且BE平分∠ABC,則下列結論:①AD=BC;②∠ACE=∠ABC;③∠ECD+∠EBC=∠BEC;④∠CEF=∠CFE.其中正的是( )
A. ①②B. ①③④C. ①②④D. ①②③④
【答案】D
【解析】
根據條件∠BAC=∠ACD=90°,∠ABC=∠ADC可以判斷四邊形ABCD是平行四邊形,于是可判斷答案①②④正確,由④再進一步判斷答案③也正確,即可做出選擇.
解:∵∠BAC=∠ACD=90°,且∠ABC=∠ADC
∴AB∥CD且∠ACB=∠CAD
∴BC∥AD
∴四邊形ABCD是平行四邊形.
∴答案①正確;
∵∠ACE+∠ECD=∠D+∠ECD=90°
∴∠ACE=∠D
而∠D=∠ABC
∴∠ACE=∠D=∠ABC
∴答案②正確;
又∵∠CEF+∠CBF=90°,∠AFB+∠ABF=90°
且∠ABF=∠CBF,∠AFB=∠CFE
∴∠CEF=∠AFB=∠CFE
∴答案④正確;
∵∠ECD=∠CAD,∠EBC=∠EBA
∴∠ECD+∠EBC=∠CFE=∠BEC
∴答案③正確.
故選:D.
科目:初中數學 來源: 題型:
【題目】如圖,已知等邊三角形OAB的頂點O(0,0),A(0,6),將該三角形繞點O順時針旋轉,每次旋轉60°,則旋轉2017次后,頂點B的坐標為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,在△ABC中,AB∶BC∶CA=3∶4∶5,且周長為36 cm,點P從點A開始沿AB邊向B點以每秒1cm的速度移動;點Q從點B沿BC邊向點C以每秒2cm的速度移動,如果同時出發(fā),則過3s時,△BPQ的面積為____cm2.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在直角坐標系中,△ABC是格點三角形(三角形的三個頂點都是小正方形的頂點).
(1)在第一象限內找一點P,以格點P、A、B為頂點的三角形與△ABC相似但不全等,請寫出符合條件格點P的坐標;
(2)請用直尺與圓規(guī)在第一象限內找到兩個點M、N,使∠AMB=∠ANB=∠ACB.請保留作圖痕跡,不要求寫畫法.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某天,小王去朋友家借書,在朋友家停留一段時間后,返回家中,如圖是他離家的路程(千米)與時間(分)的關系的圖象,根據圖象信息,下列說法正確的是( )
A. 小王去時的速度大于回家的速度B. 小王在朋友家停留了10分鐘
C. 小王去時所花時間少于回家所花時間D. 小王去時走上坡路施,回家時走下坡路
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】請將下列證明過程補充完整:
已知:如圖,AE平分∠BAC,CE平分∠ACD,且∠α+∠β=90°.
求證:AB∥CD.
證明:∵CE平分∠ACD (已知),
∴∠ACD=2∠α(______________________)
∵AE平分∠BAC (已知),
∴∠BAC=_________(______________________)
∵∠α+∠β=90°(已知),
∴2∠α+2∠β=180°(等式的性質)
∴∠ACD+∠BAC==_________(______________________)
∴AB∥CD.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC 中,AB=AC,AB 的垂直平分線交 AB 于點 D,交 CA 的延長線于點 E,∠EBC=42°,則 ∠BAC=( )
A. 159° B. 154° C. 152° D. 138°
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某游泳館普通票價30元張,暑假為了促銷,新推出一種優(yōu)惠卡:售價300元張,每次憑卡另收15元暑假普通票正常出售,優(yōu)惠卡僅限暑假使用,不限次數設游泳x次時,所需總費用為y元.
分別寫出選擇優(yōu)惠卡、普通票消費時,y與x之間的函數關系式;
在同一坐標系中,若兩種消費方式對應的函數圖象如圖所示,請求出點A、B的坐標;
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】將背面完全相同,正面上分別寫有數字1,2,3,4的四張卡片混合后,小明從中隨機地抽取一張,把卡片上的數字做為被減數,將形狀、大小完全相同,分別標有數字1,2,3的三個小球混合后,小華從中隨機地抽取一個,把小球上的數字做為減數,然后計算出這兩個數的差.
(1)請你用畫樹狀圖或列表的方法,求這兩數差為0的概率;
(2)小明與小華做游戲,規(guī)則是:若這兩數的差為非負數,則小明贏;否則,小華贏.你認為該游戲公平嗎?請說明理由.如果不公平,請你修改游戲規(guī)則,使游戲公平.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com