某電子廠商投產(chǎn)一種新型電子產(chǎn)品,每件制造成本為18元,試銷過程中發(fā)現(xiàn),每月銷售量y(萬件)與銷售單價x(元)之間的關(guān)系可以近似地看作一次函數(shù)y=-2x+100.(利潤=售價-制造成本)
(1)寫出每月的利潤z(萬元)與銷售單價x(元)之間的函數(shù)關(guān)系式;
(2)當銷售單價為多少元時,廠商每月獲得的利潤為440萬元?
(3)根據(jù)相關(guān)部門規(guī)定,這種電子產(chǎn)品的銷售單價不能高于40元,如果廠商每月的制造成本不超過540萬元,那么當銷售單價為多少元時,廠商每月獲得的利潤最大?最大利潤為多少萬元?
分析:(1)根據(jù)每月的利潤z=(x-18)y,再把y=-2x+100代入即可求出z與x之間的函數(shù)解析式,
(2)把z=440代入z=-2x2+136x-1800,解這個方程即可;
(3)根據(jù)廠商每月的制造成本不超過540萬元,以及成本價18元,得出銷售單價的取值范圍,進而得出最大利潤.
解答:解:(1)z=(x-18)y=(x-18)(-2x+100)=-2x2+136x-1800,
故z與x之間的函數(shù)解析式為z=-2x2+136x-1800;

(2)由z=440,得440=-2x2+136x-1800,
解這個方程得x1=28,x2=40
所以,銷售單價定為28元或40元,

(3)∵廠商每月的制造成本不超過540萬元,每件制造成本為18元,
∴每月的生產(chǎn)量為:大于等于
540
18
=30萬件,
y=-2x+100≥30,
解得:x≥35,
又由限價40元,得35≤x≤40,
∵z=-2x2+136x-1800=-2(x-34)2+512,
∴圖象開口向下,對稱軸右側(cè)z隨x的增大而減小,
∴x=35時,z最大為:510萬元.
當銷售單價為35元時,廠商每月獲得的利潤最大,最大利潤為510萬元.
點評:本題考查的是二次函數(shù)在實際生活中的應(yīng)用,關(guān)鍵是根據(jù)題意求出二次函數(shù)的解析式以及利用增減性求出最值.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•聊城)某電子廠商投產(chǎn)一種新型電子產(chǎn)品,每件制造成本為18元,試銷過程中發(fā)現(xiàn),每月銷售量y(萬件)與銷售單價x(元)之間的關(guān)系可以近似地看作一次函數(shù)y=-2x+100.(利潤=售價-制造成本)
(1)寫出每月的利潤z(萬元)與銷售單價x(元)之間的函數(shù)關(guān)系式;
(2)當銷售單價為多少元時,廠商每月能獲得350萬元的利潤?當銷售單價為多少元時,廠商每月能獲得最大利潤?最大利潤是多少?
(3)根據(jù)相關(guān)部門規(guī)定,這種電子產(chǎn)品的銷售單價不能高于32元,如果廠商要獲得每月不低于350萬元的利潤,那么制造出這種產(chǎn)品每月的最低制造成本需要多少萬元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

某電子廠商投產(chǎn)一種新型電子廠品,每件制造成本為18元,試銷過程中發(fā)現(xiàn),每月銷售量y(萬件)與銷售單價x(元)之間的關(guān)系可以近似地看作一次函數(shù)y=-2x+100.(利潤=售價-制造成本)
(1)當銷售單價為多少元時,廠商每月能獲得350萬元的利潤?
(2)當銷售單價為多少元時,廠商每月能獲得最大利潤?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013屆江蘇揚州江都區(qū)九年級網(wǎng)上閱卷適應(yīng)性調(diào)研考試數(shù)學(xué)試卷(帶解析) 題型:解答題

某電子廠商投產(chǎn)一種新型電子產(chǎn)品,每件制造成本為18元,試銷過程中發(fā)現(xiàn),每月銷售量(萬件)與銷售單價(元)之間的關(guān)系可以近似地看作一次函數(shù).(利潤=售價-制造成本)
(1)寫出每月的利潤(萬元)與銷售單價(元)之間的函數(shù)關(guān)系式;
(2)當銷售單價為多少元時,廠商每月獲得的利潤為440萬元?
(3)根據(jù)相關(guān)部門規(guī)定,這種電子產(chǎn)品的銷售單價不能高于40元,如果廠商每月的制造成本不超過540萬元,那么當銷售單價為多少元時,廠商每月獲得的利潤最大?最大利潤為多少萬元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇揚州江都區(qū)九年級網(wǎng)上閱卷適應(yīng)性調(diào)研考試數(shù)學(xué)試卷(解析版) 題型:解答題

某電子廠商投產(chǎn)一種新型電子產(chǎn)品,每件制造成本為18元,試銷過程中發(fā)現(xiàn),每月銷售量(萬件)與銷售單價(元)之間的關(guān)系可以近似地看作一次函數(shù).(利潤=售價-制造成本)

(1)寫出每月的利潤(萬元)與銷售單價(元)之間的函數(shù)關(guān)系式;

(2)當銷售單價為多少元時,廠商每月獲得的利潤為440萬元?

(3)根據(jù)相關(guān)部門規(guī)定,這種電子產(chǎn)品的銷售單價不能高于40元,如果廠商每月的制造成本不超過540萬元,那么當銷售單價為多少元時,廠商每月獲得的利潤最大?最大利潤為多少萬元?

 

查看答案和解析>>

同步練習(xí)冊答案