【題目】如圖,在直角坐標(biāo)系中,直線AB與x、y軸分別交于點(diǎn)A(4,0)、B(0, )兩點(diǎn),∠BAO的角平分線交y軸于點(diǎn)D,點(diǎn)C為直線AB上一點(diǎn)以AC為直徑的⊙G經(jīng)過點(diǎn)D,且與x軸交于另一點(diǎn)E.
(1)求證:y軸是⊙G的切線.
(2)求出⊙G的半徑;
(3)連結(jié)EC,求△ACE的面積.

【答案】
(1)解:連接GD,如圖1,

∵∠OAB的角平分線交y軸于點(diǎn)D,

∴∠GAD=∠DAO,

∵GD=GA,

∴∠GDA=∠GAD,

∴∠GDA=∠DAO,

∴GD∥OA,

∴∠BDG=∠BOA=90°,

∵GD為半徑,

∴y軸是⊙G的切線


(2)解:∵A(4,0),B(0, ),

∴OA=4,OB= ,

在Rt△AOB中,由勾股定理可得:AB= ,

設(shè)半徑GD=r,則BG= ﹣r,

∵GD∥OA,

∴△BDG∽△BOA,

,

r=4( ﹣r),

∴r=2.5


(3)解:連接CE,如圖2,

∵AC是圓的直徑,

∴∠AEC=∠BOE=90°,

∴CE∥OB,

∴△ACE∽△ABO,

,

設(shè)OE=a,則AE=4﹣a,

∴CE= (4﹣a),

∵CE2+AE2=AC2

(4﹣a)2+(4﹣a)2=25,

∴a=1或a=7(不合題意,舍去)

∴AE=3,由勾股定理可得CE=4,

∴△ACE的面積= AECE= ×3×4=6.


【解析】(1)連接DG,要證明y軸是⊙G的切線,只需要連接GD后證明GD⊥OB即可.(2)由(1)可知GD∥OA,則△BDG∽△BOA,設(shè)半徑為r后,利用對應(yīng)邊的比相等列方程即可求出半徑r的值.(3)連接CE,設(shè)OE=a,則AE=4﹣a,易證△ACE∽△ABO,由相似三角形的性質(zhì)可得到CE和OE數(shù)量關(guān)系,再利用勾股定理可求出a的值,進(jìn)而可求出數(shù)△ACE的面積.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解下列方程:

(1)x+2(5﹣3x)=15﹣3(7﹣5x

(2)

(3)

(4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有正方形ABCD和一個以O(shè)為直角頂點(diǎn)的三角板,移動三角板,使三角板的兩直角邊所在直線分別與直線BC,CD交于點(diǎn)M,N.

(1如圖1,若點(diǎn)O與點(diǎn)A重合,則OM與ON的數(shù)量關(guān)系是__________________;

(2如圖2,若點(diǎn)O正方形的中心(即兩對角線的交點(diǎn),則(1中的結(jié)論是否仍然成立?請說明理由

(3如圖3,若點(diǎn)O在正方形的內(nèi)部(含邊界,當(dāng)OM=ON時,請?zhí)骄奎c(diǎn)O在移動過程中可形成什么圖形?

(4如圖4是點(diǎn)O在正方形外部的一種情況.當(dāng)OM=ON時,請你就“點(diǎn)O的位置在各種情況下(含外部移動所形成的圖形”提出一個正確的結(jié)論.(不必說理

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩所學(xué)校共82人參加文藝匯演(其中甲校人數(shù)多于乙校人數(shù),且甲校人數(shù)小于80人),如果兩所學(xué)校分別購買服裝,共付款6060.

購買服裝套數(shù)

1~40

41~80

81套及81套以上

每套服裝價格

80

70

60

(1)如果甲、乙兩所學(xué)校聯(lián)合起來購買服裝,那么比各自購買服裝一共可以節(jié)約多少錢?

(2)甲、乙兩所學(xué)校各有多少學(xué)生參加演出?

(3)如果乙學(xué)校單獨(dú)購買時,服裝廠每件服裝獲利60%,丙學(xué)校購買的服裝比乙多15套,那么服裝廠賣給丙學(xué)校服裝時共獲利多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為響應(yīng)國家要求中小學(xué)生每天鍛煉1小時的號召,某校開展了形式多樣的“陽光體育運(yùn)動”活動,小明從學(xué)校同學(xué)中隨機(jī)抽取一部分同學(xué),對他們參加鍛煉的情況進(jìn)行了統(tǒng)計(jì),并繪制了下面的統(tǒng)計(jì)圖(1)和圖(2),請根據(jù)所繪制的統(tǒng)計(jì)圖回答下面問題:
(1)在此次調(diào)查中,小明共調(diào)查了位同學(xué);
(2)請?jiān)趫D(1)中將“乒乓球”部分的圖形補(bǔ)充完整;
(3)圖(2)中表示“足球”的扇形的圓心角的度數(shù)為;
(4)如果該學(xué)校共有學(xué)生1200人,則參加“籃球”運(yùn)動項(xiàng)目的人數(shù)約有

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】OB是∠AOC內(nèi)部一條射線,OM是∠AOB平分線,ON是∠AOC平分線,OP是∠NOA平分線,OQ是∠MOA平分線,則∠POQ∶∠BOC=( )

A. 1∶2 B. 1∶3 C. 2∶5 D. 1∶4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)學(xué)活動課上,小明提出這樣一個問題:∠B=C=90°,EBC的中點(diǎn),DE平分∠ADC,CED=35°,如圖,則∠EAB是多少度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明從家騎自行車出發(fā),沿一條直路到相距2400m的郵局辦事,小明出發(fā)的同時,他的爸爸以96m/min速度從郵局同一條道路步行回家,小明在郵局停留2min后沿原路以原速返回,設(shè)他們出發(fā)后經(jīng)過t min時,小明與家之間的距離為s1m,小明爸爸與家之間的距離為s2m,圖中折線OABD、線段EF分別表示s1、s2t之間的函數(shù)關(guān)系的圖象

(1)求s2t之間的函數(shù)關(guān)系式;

(2)小明從家出發(fā),經(jīng)過多長時間在返回途中追上爸爸?這時他們距離家還有多遠(yuǎn)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】歷史上的數(shù)學(xué)巨人歐拉最先把關(guān)于的多項(xiàng)式用記號的形式來表示可用其它字母,但不同的字母表示不同的多項(xiàng)式,例如,把=某數(shù)時的多項(xiàng)式的值用來表示.

例如時多項(xiàng)式的值記為,

已知,

(1)的值

(2),求的值

查看答案和解析>>

同步練習(xí)冊答案