【題目】解下列方程:

(1)x+2(5﹣3x)=15﹣3(7﹣5x

(2)

(3)

(4)

【答案】(1)x=;(2)x=6;(3)x=2;(4)x=﹣

【解析】

(1)方程去括號,移項(xiàng)合并,把x系數(shù)化為1,即可求出解;

(2)方程去分母,去括號,移項(xiàng)合并,把x系數(shù)化為1,即可求出解;

(3)方程去分母,去括號,移項(xiàng)合并,把x系數(shù)化為1,即可求出解;

(4)方程去分母,去括號,移項(xiàng)合并,把x系數(shù)化為1,即可求出解.

解:(1)去括號得:x+10﹣6x=15﹣21+15x,

移項(xiàng)合并得:﹣19x=﹣16,

解得:x=;

(2)去分母得:2x+2﹣8=x,

解得:x=6;

(3)方程整理得:,

去分母得:17﹣20x=3﹣6﹣10x,

移項(xiàng)合并得:﹣10x=﹣20,

解得:x=2;

(4)去分母得:30x+20﹣20=10x﹣5﹣8x﹣4,

移項(xiàng)合并得:28x=﹣9,

解得:x=﹣

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)的角平分線上的一點(diǎn),點(diǎn)在邊上.愛動(dòng)腦筋的小剛經(jīng)過仔細(xì)觀察后,進(jìn)行如下操作:在邊上取一點(diǎn),使得,這時(shí)他發(fā)現(xiàn)之間有一定的數(shù)量關(guān)系,請你寫出的數(shù)量關(guān)系__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=﹣x﹣4與拋物線y=ax2+bx+c相交于A,B兩點(diǎn),其中A,B兩點(diǎn)的橫坐標(biāo)分別為﹣1和﹣4,且拋物線過原點(diǎn).

(1)求拋物線的解析式;
(2)在坐標(biāo)軸上是否存在點(diǎn)C,使△ABC為等腰三角形?若存在,求出點(diǎn)C的坐標(biāo),若不存在,請說明理由;
(3)若點(diǎn)P是線段AB上不與A,B重合的動(dòng)點(diǎn),過點(diǎn)P作PE∥OA,與拋物線第三象限的部分交于一點(diǎn)E,過點(diǎn)E作EG⊥x軸于點(diǎn)G,交AB于點(diǎn)F,若SBGF=3SEFP , 求 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某餐廳計(jì)劃購買12張餐桌和一批椅子(不少于12把),現(xiàn)從甲、乙兩商場了解到同一型號的餐桌報(bào)價(jià)都為每張200元,餐椅報(bào)價(jià)都為每把50元.甲商場規(guī)定:每購買一張餐桌贈送一把餐椅;乙商場規(guī)定:所有餐桌、餐椅均按報(bào)價(jià)的八五折銷售,那么,什么情況下到甲商場購買更優(yōu)惠.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,在△ABC中,∠ACB=90°,BC=2,∠A=30°,點(diǎn)E,F(xiàn)分別是線段BC,AC的中點(diǎn),連接EF.

(1)說明線段BE與AF的位置關(guān)系和數(shù)量關(guān)系;
(2)如圖②,當(dāng)△CEF繞點(diǎn)C順時(shí)針旋轉(zhuǎn)α(0°<α<90°)時(shí),連接AF,BE,(1)中的結(jié)論是否仍然成立?如果成立,請證明;如果不成立,請說明理由;
(3)如圖③,當(dāng)△CEF繞點(diǎn)C順時(shí)針旋轉(zhuǎn)α(0°<α<180°)時(shí),延長FC交AB于點(diǎn)D,如果AD=6﹣2 ,求旋轉(zhuǎn)角α的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程(1﹣2k)x2﹣2 x﹣1=0有兩個(gè)不相等實(shí)數(shù)根,則k的取值范圍為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)已知關(guān)于x的方程kx=11﹣2x有整數(shù)解,則負(fù)整數(shù)k的值為   

(2)若a+b+c=0,且abc,以下結(jié)論:

a>0,c>0;

②關(guān)于x的方程ax+b+c=0的解為x=1;

a2=(b+c2;

的值為02;

⑤在數(shù)軸上點(diǎn)A、B、C表示數(shù)a、b、c,若b<0,則線段AB與線段BC的大小關(guān)系是ABBC

其中正確的結(jié)論是   (填寫正確結(jié)論的序號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,AC為對角線,點(diǎn)E在AB邊上,EF⊥AC于點(diǎn)F,連接EC,AF=3,△EFC的周長為12,則EC的長為(
A.
B.3
C.5
D.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,直線AB與x、y軸分別交于點(diǎn)A(4,0)、B(0, )兩點(diǎn),∠BAO的角平分線交y軸于點(diǎn)D,點(diǎn)C為直線AB上一點(diǎn)以AC為直徑的⊙G經(jīng)過點(diǎn)D,且與x軸交于另一點(diǎn)E.
(1)求證:y軸是⊙G的切線.
(2)求出⊙G的半徑;
(3)連結(jié)EC,求△ACE的面積.

查看答案和解析>>

同步練習(xí)冊答案