如圖,AB是半圓O的直徑,過點O作弦AD的垂線交半圓O于點E,交AC于點C,使∠BED=∠C.
(1)判斷直線AC與圓O的位置關系,并證明你的結論;
(2)若AC=8,,求AD的長.

【答案】分析:(1)由于OC⊥AD,那么∠OAD+∠AOC=90°,又∠BED=∠BAD,且∠BED=∠C,于是∠OAD=∠C,從而有∠C+∠AOC=90°,再利用三角形內角和定理,可求∠OAC=90°,即AC是⊙O的切線;
(2)連接BD,AB是直徑,那么∠ADB=90°,在Rt△AOC中,由于AC=8,∠C=∠BED,cos∠BED=,利用三角函數(shù)值,可求OA=6,即AB=12,在Rt△ABD中,由于AB=12,∠OAD=∠BED,cos∠BED=,同樣利用三角函數(shù)值,可求AD.
解答:解:(1)AC與⊙O相切.
證明:∵弧BD是∠BED與∠BAD所對的弧,
∴∠BAD=∠BED,
∵OC⊥AD,
∴∠AOC+∠BAD=90°,
∴∠BED+∠AOC=90°,
即∠C+∠AOC=90°,
∴∠OAC=90°,
∴AB⊥AC,即AC與⊙O相切;

(2)解:連接BD.
∵AB是⊙O直徑,
∴∠ADB=90°,
在Rt△AOC中,∠CAO=90°,
∵AC=8,∠ADB=90°,,
∴AO=6,
∴AB=12,
在Rt△ABD中,∵cos∠OAD=cos∠BED=,
∴AD=AB•cos∠OAD=12×=
點評:本題利用了同圓中同弧所對的圓周角相等、等量代換、切線的判定、直徑所對的圓周角等于90°、三角函數(shù)值.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,AB是半圓O的直徑,AC是弦,點P從點B開始沿BA邊向點A以1cm/s的速度移動,若AB長為10cm,點O到AC的距離為4cm.
(1)求弦AC的長;
(2)問經過幾秒后,△APC是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網已知:如圖,AB是半圓O的直徑,OD是半徑,BM切半圓于點B,OC與弦AD平行交BM于點C.
(1)求證:CD是半圓O的切線;
(2)若AB的長為4,點D在半圓O上運動,當AD的長為1時,求點A到直線CD的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,AB是半圓O的直徑,點D是半圓上一動點,AB=10,AC=8,當△ACD是等腰三角形時,點D到AB的距離是
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,AB是半圓O的直徑,以OA為直徑的半圓O′與弦AC交于點D,O′E∥AC,并交OC于點E,則下列結論:①S△O′OE=
1
2
S△AOC2;②點D時AC的中點;③
AC
=2AD;④四邊形O′DEO是菱形.其中正確的結論是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,AB是半圓O的直徑,過點O作弦AD的垂線交半圓O于點E,F(xiàn)為垂足,交AC于點C使∠BED=∠C.請判斷直線AC與圓O的位置關系,并證明你的結論.

查看答案和解析>>

同步練習冊答案