【題目】在平面直角坐標(biāo)系中,拋物線(xiàn)與交于點(diǎn),將點(diǎn)向右平移某個(gè)距離得到點(diǎn),點(diǎn)在拋物線(xiàn)上.已知點(diǎn),.
(1) 當(dāng)時(shí).
①求點(diǎn)的坐標(biāo)(用含的式子表示);
②求線(xiàn)段的長(zhǎng)度;
(2)若拋物線(xiàn)與線(xiàn)段恰有一個(gè)公共點(diǎn),結(jié)合函數(shù)圖象,求的取值范圍.
【答案】(1)①,②;(2)或
【解析】
(1)①根據(jù)題意令,求出兩個(gè)x的值,然后根據(jù)題意判斷A的坐標(biāo)即可;
②根據(jù)B,P兩點(diǎn)的坐標(biāo)即可求出BP的長(zhǎng)度;
(2)先利用拋物線(xiàn)的性質(zhì)判斷出點(diǎn)Q在拋物線(xiàn)內(nèi),然后分兩種情況:或時(shí),分別討論即可.
解: (1) ①由己知得: ,
化簡(jiǎn)得:,
,
解得:,.
∵,又點(diǎn)在點(diǎn)的左側(cè),
∴;
②∵, ,
∴;
(2)∵ ,令時(shí),,
∴拋物線(xiàn)的對(duì)稱(chēng)軸為 ,與軸交點(diǎn)坐標(biāo)為,
∴由拋物線(xiàn)的對(duì)稱(chēng)性可知必在拋物線(xiàn)上.
又由己知,
∴,
即點(diǎn)必在拋物線(xiàn)內(nèi)部.
當(dāng)時(shí),點(diǎn),,
∴點(diǎn)一定在點(diǎn)左側(cè)即點(diǎn)一定在拋物線(xiàn)外部,
∴當(dāng)時(shí),拋物線(xiàn)與線(xiàn)段恰有一個(gè)公共點(diǎn).
當(dāng)時(shí),點(diǎn),
若拋物線(xiàn)與線(xiàn)段恰有一個(gè)公共點(diǎn),則
解得.
綜上所述:或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】紅旗連鎖超市準(zhǔn)備購(gòu)進(jìn)甲、乙兩種綠色袋裝食品.甲、乙兩種綠色袋裝食品的進(jìn)價(jià)和售價(jià)如表.已知:用2000元購(gòu)進(jìn)甲種袋裝食品的數(shù)量與用1600元購(gòu)進(jìn)乙種袋裝食品的數(shù)量相同.
甲 | 乙 | |
進(jìn)價(jià)(元/袋) | ||
售價(jià)(元/袋) | 20 | 13 |
(1)求的值;
(2)要使購(gòu)進(jìn)的甲、乙兩種綠色袋裝食品共800袋的總利潤(rùn)(利潤(rùn)=售價(jià)-進(jìn)價(jià))不少于4800元,且不超過(guò)4900元,問(wèn)該超市有幾種進(jìn)貨方案?
(3)在(2)的條件下,該超市如果對(duì)甲種袋裝食品每袋優(yōu)惠元出售,乙種袋裝食品價(jià)格不變.那么該超市要獲得最大利潤(rùn)應(yīng)如何進(jìn)貨?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線(xiàn)的對(duì)稱(chēng)軸是直線(xiàn)且與軸相交于兩點(diǎn),與軸交于點(diǎn)點(diǎn)的坐標(biāo)為.
求拋物線(xiàn)的解析式;
若點(diǎn)是第一象限內(nèi)拋物線(xiàn)上一點(diǎn),過(guò)點(diǎn)作直線(xiàn)軸于點(diǎn)交直線(xiàn)于點(diǎn)當(dāng)時(shí),求四邊形的面積.
在的條件下,若點(diǎn)在拋物線(xiàn)上,點(diǎn)在拋物線(xiàn)的對(duì)稱(chēng)軸上,當(dāng)以點(diǎn)為頂點(diǎn)的四邊形是平行四邊形時(shí),求出所有符合條件的點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,等邊△ABC的邊長(zhǎng)為4,點(diǎn)D是BC邊上一動(dòng)點(diǎn),且CE=BD,連接AD,BE,AD與BE相交于點(diǎn)P,連接PC.則線(xiàn)段PC的最小值等于_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某超市隨機(jī)選取1000位顧客,記錄了他們購(gòu)買(mǎi)甲、乙、丙、丁四種商品的情況,整理成如下統(tǒng)計(jì)表,其中“√”表示購(gòu)買(mǎi),“×”表示未購(gòu)買(mǎi).假定每位顧客購(gòu)買(mǎi)商品的可能性相同.
商品 顧客人數(shù) | 甲 | 乙 | 丙 | 丁 |
100 | √ | × | √ | √ |
217 | × | √ | × | √ |
200 | √ | √ | √ | × |
300 | √ | × | √ | × |
85 | √ | × | × | × |
98 | × | √ | × | × |
(1)估計(jì)顧客同時(shí)購(gòu)買(mǎi)乙和丙的概率為__________.
(2)如果顧客購(gòu)買(mǎi)了甲,并且同時(shí)也在乙、丙、丁中進(jìn)行了選購(gòu),則購(gòu)買(mǎi)__________(填乙、丙、丁)商品的可能性最大.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,直線(xiàn):與直線(xiàn)分別交于點(diǎn).直線(xiàn)與交于點(diǎn).記線(xiàn)段,圍成的區(qū)域(不含邊界)為.橫,縱坐標(biāo)都是整數(shù)的點(diǎn)叫做整點(diǎn).
(1)當(dāng)時(shí),區(qū)域內(nèi)的整點(diǎn)個(gè)數(shù)為_____;
(2)若區(qū)域內(nèi)沒(méi)有整點(diǎn),則的取值范圍是_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是⊙的直徑,是⊙的一條弦,,的延長(zhǎng)線(xiàn)交⊙于點(diǎn),交的延長(zhǎng)線(xiàn)于點(diǎn),連接,且恰好∥,連接交于點(diǎn),延長(zhǎng)交于點(diǎn),連接.
(1)求證:是⊙的切線(xiàn);
(2)求證:點(diǎn)是的中點(diǎn);
(3)當(dāng)⊙的半徑為時(shí),求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC是等邊三角形,點(diǎn)D是射線(xiàn)BC上的一個(gè)動(dòng)點(diǎn)(點(diǎn)D不與點(diǎn)B、C重合),△ADE是以AD為邊的等邊三角形,過(guò)點(diǎn)E作BC的平行線(xiàn),分別交射線(xiàn)AB、AC于點(diǎn)F、G,連接BE.
(1)如圖(a)所示,當(dāng)點(diǎn)D在線(xiàn)段BC上時(shí).
①求證:△AEB≌△ADC;
②探究四邊形BCGE是怎樣特殊的四邊形?并說(shuō)明理由;
(2)如圖(b)所示,當(dāng)點(diǎn)D在BC的延長(zhǎng)線(xiàn)上時(shí),直接寫(xiě)出(1)中的兩個(gè)結(jié)論是否成立;
(3)在(2)的情況下,當(dāng)點(diǎn)D運(yùn)動(dòng)到什么位置時(shí),四邊形BCGE是菱形?并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明和小亮分別從甲地和乙地同時(shí)出發(fā),沿同一條路相向而行,小明開(kāi)始跑步,中途改為步行,到達(dá)乙地恰好用小亮騎自行車(chē)以的速度直接到甲地,兩人離甲地的路程與各自離開(kāi)出發(fā)地的時(shí)間之間的函數(shù)圖象如圖所示,
甲、乙兩地之間的路程為______m,小明步行的速度為______;
求小亮離甲地的路程y關(guān)于x的函數(shù)表達(dá)式,并寫(xiě)出自變量x的取值范圍;
求兩人相遇的時(shí)間.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com