在平面上有且只有4個點,這4個點有一個獨特的性質(zhì):每兩點之間的距離有且只有兩種長度.例如正方形ABCD,有AB=BC=CD=DA≠AC=BD,請畫出具有這種獨特性質(zhì)的另外4種不同的圖形,并標(biāo)注相同的線段.

答案:
解析:

  解:如圖所示

  甲:AB=BC=CA≠OA=OB=OC;

  乙:AB=AC=AD=BD≠BC=CD;

  丙:AB=AC≠OA=OB=OC=BC;

  。篈B=BC=CD=DA=BD≠AC;

  戊:AB=AD=DC≠AC=BD=BC.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

29、在平面上有且只有四個點,這四個點有一個獨特的性質(zhì):每兩點之間的距離有且只有兩種長度,例如正方形ABCD四個頂點A,B,C,D,有AB=BC=CD=DA,AC=BD,請畫出具有這種獨特性質(zhì)的另外四種不同的圖形,并標(biāo)明相等的線段.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

25、在平面上有且只有4個點,這4個點中有一個獨特的性質(zhì):連接每兩點可得到6條線段,這6條線段有且只有兩種長度.我們把這四個點稱作準(zhǔn)等距點.例如正方形ABCD的四個頂點(如圖1),有AB=BC=CD=DA,AC=BD.其實滿足這樣性質(zhì)的圖形有很多,如圖2中A、B、C、O四個點,滿足AB=BC=CA,OA=OB=OC;如圖3中A、B、C、O四個點,滿足OA=OB=OC=BC,AB=AC.
(1)如圖4,若等腰梯形ABCD的四個頂點是準(zhǔn)等距點,且AD∥BC.
①寫出相等的線段(不再添加字母);
②求∠BCD的度數(shù).
(2)請再畫出一個四邊形,使它的四個頂點為準(zhǔn)等距點,并寫出相等的線段.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(8分)在平面上有且只有4個點,這4個點中有一個獨特的性質(zhì):連結(jié)每兩點可得到6條線段,這6條線段有且只有兩種長度.我們把這四個點稱作準(zhǔn)等距點.例如正方形ABCD的四個頂點(如圖1),有AB=BC=CD=DA,AC=BD.其實滿足這樣性質(zhì)的圖形有很多,如圖2中A、B、C、O四個點,滿足AB=BC=CA,OA=OB=OC;如圖3中A、B、C、O四個點,滿足OA=OB=OC=BC,AB=AC.


(1)如圖,若等腰梯形ABCD的四個頂點是準(zhǔn)等距點,且AD∥BC.
①寫出相等的線段(不再添加字母);
②求∠BCD的度數(shù).
(2)請再畫出一個四邊形,使它的四個頂點為準(zhǔn)等距點,并寫出相等的線段.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011屆南京市雨花臺中考數(shù)學(xué)一模試卷 題型:解答題

(8分)在平面上有且只有4個點,這4個點中有一個獨特的性質(zhì):連結(jié)每兩點可得到6條線段,這6條線段有且只有兩種長度.我們把這四個點稱作準(zhǔn)等距點.例如正方形ABCD的四個頂點(如圖1),有AB=BC=CD=DA,AC=BD.其實滿足這樣性質(zhì)的圖形有很多,如圖2中A、B、C、O四個點,滿足AB=BC=CA,OA=OB=OC;如圖3中A、B、C、O四個點,滿足OA=OB=OC=BC,AB=AC.


(1)如圖,若等腰梯形ABCD的四個頂點是準(zhǔn)等距點,且AD∥BC.
①寫出相等的線段(不再添加字母);
②求∠BCD的度數(shù).
(2)請再畫出一個四邊形,使它的四個頂點為準(zhǔn)等距點,并寫出相等的線段.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011屆江蘇省南京市初三中考第一次模擬考試數(shù)學(xué)卷 題型:解答題

.(8分)在平面上有且只有4個點,這4個點中有一個獨特的性質(zhì):連結(jié)每兩點可得到6條線段,這6條線段有且只有兩種長度.我們把這四個點稱作準(zhǔn)等距點.例如正方形ABCD的四個頂點(如圖1),有AB=BC=CD=DAAC=BD.其實滿足這樣性質(zhì)的圖形有很多,如圖2中A、BC、O四個點,滿足AB=BC=CAOA=OB=OC;如圖3中A、BC、O四個點,滿足OA=OB=OC=BCAB=AC

 

 

 

 

 

 

(1)如圖,若等腰梯形ABCD的四個頂點是準(zhǔn)等距點,且ADBC

①寫出相等的線段(不再添加字母);

②求∠BCD的度數(shù).

 

 

(2)請再畫出一個四邊形,使它的四個頂點為準(zhǔn)等距點,并寫出相等的線段.

 

 

 

查看答案和解析>>

同步練習(xí)冊答案