【題目】如圖,在Rt△OAB中,OA=AB,∠OAB=90°,點(diǎn)P從點(diǎn)O沿邊OA、AB勻速運(yùn)動(dòng)到點(diǎn)B,過(guò)點(diǎn)P作PC⊥OB交OB于點(diǎn)C,線段AB=2,OC=x,S△POC=y,則能夠反映y與x之間函數(shù)關(guān)系的圖象大致是( )
A. B.
C. D.
【答案】D
【解析】
分兩種情況:①當(dāng)P點(diǎn)在OA上時(shí),即0≤x≤2時(shí);②當(dāng)P點(diǎn)在AB上時(shí),即2<x≤4時(shí),求出這兩種情況下的PC長(zhǎng),則y=PCOC的函數(shù)式可用x表示出來(lái),對(duì)照選項(xiàng)即可判斷.
解:∵△AOB是等腰直角三角形,AB=,
∴OB=4.
①當(dāng)P點(diǎn)在OA上時(shí),即0≤x≤2時(shí),
PC=OC=x,S△POC=y=PCOC=x2,
是開(kāi)口向上的拋物線,當(dāng)x=2時(shí),y=2;
②當(dāng)P點(diǎn)在AB上時(shí),即2<x≤4時(shí),
OC=x,則BC=4﹣x,PC=BC=4﹣x,
S△POC=y=PCOC=x(4﹣x)=﹣x2+2x,
是開(kāi)口向下的拋物線,當(dāng)x=4時(shí),y=0.
綜上所述,D答案符合運(yùn)動(dòng)過(guò)程中y與x的函數(shù)關(guān)系式.
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題中,①Rt△ABC中,已知兩邊長(zhǎng)分別為3和4,則第三邊為5;②有一個(gè)內(nèi)角等于其他兩個(gè)內(nèi)角和的三角形是直角三角形;③三角形的三邊分別為a,b,c若a2+c2=b2,則∠B=90°④在△ABC中,∠A:∠B:∠C=1:5:6,則△ABC為直角三角形;其中正確命題的個(gè)數(shù)為( )個(gè)
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】今年,我國(guó)海關(guān)總署嚴(yán)厲打擊“洋垃圾”違法行動(dòng),堅(jiān)決把“洋垃圾”拒于國(guó)門之外.如圖,某天我國(guó)一艘海監(jiān)船巡航到A港口正西方的B處時(shí),發(fā)現(xiàn)在B的北偏東60°方向,相距150海里處的C點(diǎn)有一可疑船只正沿CA方向行駛,C點(diǎn)在A港口的北偏東30°方向上,海監(jiān)船向A港口發(fā)出指令,執(zhí)法船立即從A港口沿AC方向駛出,在D處成功攔截可疑船只,此時(shí)D點(diǎn)與B點(diǎn)的距離為75海里.
(1)求B點(diǎn)到直線CA的距離;
(2)執(zhí)法船從A到D航行了多少海里?(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(感知)如圖①,點(diǎn)C是AB中點(diǎn),CD⊥AB,P是CD上任意一點(diǎn),由三角形全等的判定方法“SAS”易證△PAC≌△PBC,得到線段垂直平分線的一條性質(zhì)“線段垂直平分線上的點(diǎn)到線段兩端的距離相等”
(探究)如圖②,在平面直角坐標(biāo)系中,直線y=-x+1分別交x軸、y軸于點(diǎn)A和點(diǎn)B,點(diǎn)C是AB中點(diǎn),CD⊥AB交OA于點(diǎn)D,連結(jié)BD,求BD的長(zhǎng)
(應(yīng)用)如圖③
(1)將線段AB繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°得到線段AB′,請(qǐng)?jiān)趫D③網(wǎng)格中畫出線段AB;
(2)若存在一點(diǎn)P,使得PA=PB′,且∠APB′≠90°,當(dāng)點(diǎn)P的橫、縱坐標(biāo)均為整數(shù)時(shí),則AP長(zhǎng)度的最小值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】經(jīng)過(guò)實(shí)驗(yàn)獲得兩個(gè)變量 x(x 0), y( y 0) 的一組對(duì)應(yīng)值如下表。
x | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
y | 7 | 3.5 | 2.33 | 1.75 | 1.4 | 1.17 | 1 |
(1)在網(wǎng)格中建立平面直角坐標(biāo)系,畫出相應(yīng)的函數(shù)圖象,求出這個(gè)函數(shù)表達(dá)式;
(2)結(jié)合函數(shù)圖象解決問(wèn)題:(結(jié)果保留一位小數(shù))
①的值約為多少?
②點(diǎn)A坐標(biāo)為(6,0),點(diǎn)B在函數(shù)圖象上,OA=OB,則點(diǎn)B的橫坐標(biāo)約是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,點(diǎn)C是⊙O上一點(diǎn),點(diǎn)D是的中點(diǎn),過(guò)點(diǎn)D作⊙O的切線,與AB、AC的延長(zhǎng)線分別交于點(diǎn)E、F,連接AD.
(1)求證:AF⊥EF.
(2)直接回答:
①已知AB=2,當(dāng)BE為何值時(shí),AC=CF?
②連接BD、CD、OC,當(dāng)∠E等于多少度時(shí),四邊形OBDC是菱形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線的圖象與軸交于兩點(diǎn)(點(diǎn)在點(diǎn)的左邊)與軸交于點(diǎn),拋物線的頂點(diǎn)為.
(1)求點(diǎn)的坐標(biāo);
(2)點(diǎn)為線段上一點(diǎn)(點(diǎn)不與點(diǎn)重合),過(guò)點(diǎn)作軸的垂線,與直線交于點(diǎn),與拋物線交于點(diǎn),過(guò)點(diǎn)作交拋物線于點(diǎn),過(guò)點(diǎn)作軸于點(diǎn),可得矩形.如圖,點(diǎn)在點(diǎn)左邊,當(dāng)矩形的周長(zhǎng)最大時(shí),求此時(shí)的的面積;
(3)在(2)的條件下,當(dāng)矩形的周長(zhǎng)最大時(shí),連接,過(guò)拋物線上一點(diǎn)作軸的平行線,與直線交于點(diǎn)(點(diǎn)在點(diǎn)的上方)若,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】全球最大的關(guān)公塑像矗立在荊州古城東門外.如圖,張三同學(xué)在東門城墻上C處測(cè)得塑像底部B處的俯角為18°48′,測(cè)得塑像頂部A處的仰角為45°,點(diǎn)D在觀測(cè)點(diǎn)C正下方城墻底的地面上,若CD=10米,則此塑像的高AB約為 米(參考數(shù)據(jù):tan78°12′≈4.8).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某水果店經(jīng)銷一種高檔水果,售價(jià)為每千克50元
(1)連續(xù)兩次降價(jià)后售價(jià)為每千克32元,若每次下降的百分率相同.求平均下降的百分率;
(2)已知這種水果的進(jìn)價(jià)為每千克40元,每天可售出500千克,經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn),若每千克漲價(jià)1元,日銷售量將減少20千克,每千克應(yīng)漲價(jià)多少元才能使每天獲得的利潤(rùn)最大?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com