【題目】如圖,△ABC三個頂點的坐標分別為A(1,1),B(4,2),C(3,4).
(1)請畫出△ABC向左平移5個單位長度后得到的△A1B1C1;
(2)請畫出△ABC關于原點對稱的△A2B2C2;
(3)在x軸上求作一點P,使△PAB的周長最小,請畫出△PAB,并直接寫出P的坐標.
【答案】(1)作圖見試題解析;(2)作圖見試題解析;(3)作圖見試題解析,P(2,0).
【解析】試題分析:(1)根據(jù)網(wǎng)格結構找出點A、B、C平移后的對應點A1、B1、C1的位置,然后順次連接即可;
(2)根據(jù)網(wǎng)格結構找出點A、B、C關于原點的對稱點A2、B2、C2的位置,然后順次連接即可;
(3)找出點A關于x軸的對稱點A′,連接A′B與x軸相交于一點,根據(jù)軸對稱確定最短路線問題,交點即為所求的點P的位置,然后連接AP、BP并根據(jù)圖象寫出點P的坐標即可.
試題解析:(1)△A1B1C1如圖所示;
(2)△A2B2C2如圖所示;
(3)△PAB如圖所示,P(2,0).
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩工程隊承包一項工程,如果甲工程隊單獨施工,恰好如期完成;如果乙工程隊單獨施工就要超過6個月才能完成,現(xiàn)在甲、乙兩隊先共同施工4個月,剩下的由乙隊單獨施工,則恰好如期完成.
(1)問原來規(guī)定修好這條公路需多少長時間?
(2)現(xiàn)要求甲、乙兩個工程隊都參加這項工程,但由于受到施工場地條件限制,甲、乙兩工程隊不能同時施工.已知甲工程隊每月的施工費用為4萬元,乙工程隊每月的施工費用為2萬元.為了結算方便,要求:甲、乙的施工時間為整數(shù)個月,不超過15個月完成.當施工費用最低時,甲、乙各施工了多少個月?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知點A(﹣2,﹣4),直線x=﹣2與x軸相交于點B,連接OA,拋物線y=﹣x2從點O沿OA方向平移,與直線x=﹣2交于點P,頂點M到點A時停止移動.
(1)線段OA所在直線的函數(shù)解析式是;
(2)設平移后拋物線的頂點M的橫坐標為m,問:當m為何值時,線段PA最長?并求出此時PA的長.
(3)若平移后拋物線交y軸于點Q,是否存在點Q使得△OMQ為等腰三角形?若存在,請求出點Q的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知∠1和∠2互為補角,∠A=∠D.求證:AB∥CD.
證明:∵∠1與∠CGD是對頂角,
∴∠1=∠CGD(______).
又∠1和∠2互為補角(已知),
∴∠CGD和∠2互為補角,
∴AE∥FD(_________),
∴∠A=∠BFD(_______).
∵∠A=∠D(已知),
∴∠BFD=∠D(_______),
AB∥CD(______).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知反比例函數(shù)(k為常數(shù),k≠1).
(Ⅰ)其圖象與正比例函數(shù)y=x的圖象的一個交點為P,若點P的縱坐標是2,求k的值;
(Ⅱ)若在其圖象的每一支上,y隨x的增大而減小,求k的取值范圍;
(Ⅲ)若其圖象的一支位于第二象限,在這一支上任取兩點A(x1,y1)、B(x2,y2),當y1>y2時,試比較x1與x2的大小.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是一根起點為1的數(shù)軸,現(xiàn)有同學將它彎折,彎折后虛線上第一行的數(shù)是1,第二行的數(shù)是13,第三行的數(shù)是43,…,依此規(guī)律,第五行的數(shù)是( )
A. 183 B. 157 C. 133 D. 91
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系 中,已知點 , .若平移點 到點 ,使以點 , , , 為頂點的四邊形是菱形,則正確的平移方法是( )
A.向左平移1個單位,再向下平移1個單位
B.向左平移 個單位,再向上平移1個單位
C.向右平移 個單位,再向上平移1個單位
D.向右平移1個單位,再向上平移1個單位
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com