【題目】完成下面的證明:
已知:如圖,∠AED=∠C,∠DEF=∠B.求證:∠1=∠2.
證明:∵∠AED=∠C(已知),
∴ ∥ ( ),
∴∠B+∠BDE=180°( ),
∵∠DEF=∠B(已知),
∴∠DEF+∠BDE=180°(等量代換),
∴ ∥ ( ),
∴ ∠1=∠2( ).
【答案】DE;BC;同位角相等,兩直線平行;兩直線平行,同旁內(nèi)角互補;EF;AB;同旁內(nèi)角互補,兩直線平行;兩直線平行,內(nèi)錯角相等.
【解析】
先判斷出DE∥BC得出∠B+∠BDE=180°,再等量代換,即可判斷出EF∥AB,最后利用平行線的性質(zhì)可得出結(jié)果.
解:∵∠AED=∠C(已知),
∴DE∥BC(同位角相等,兩直線平行),
∴∠B+∠BDE=180°(兩直線平行,同旁內(nèi)角互補),
∵∠DEF=∠B(已知),
∴∠DEF+∠BDE=180°(等量代換),
∴EF∥AB(同旁內(nèi)角互補,兩直線平行),
∴∠1=∠2(兩直線平行,內(nèi)錯角相等).
故答案為:DE;BC;同位角相等,兩直線平行;兩直線平行,同旁內(nèi)角互補;EF;AB;同旁內(nèi)角互補,兩直線平行;兩直線平行,內(nèi)錯角相等.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列條件:①∠A﹣∠B=∠C; ②∠A:∠B:∠C=2:3:5; ③∠A=∠B= ∠ C;④∠A=∠B=2∠C;⑤∠A=∠B= ∠C,其中能確定△ABC 為直角三角形的條件有 ( )
A.2 個B.3 個C.4 個D.5 個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,DM、EN分別垂直平分AC和BC,交AB于M、N兩點,DM與EN相交于點F.
(1)若△CMN的周長為15cm,求AB的長;
(2)若∠MFN=70°,求∠MCN的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線l1∥l2,且l4和l1、l2分別交于A、B兩點,點P為線段AB上.的一個定點(如圖1)
(1)寫出∠1、∠2、∠3、之間的關(guān)系并說出理由.
(2)如果點P為線段AB上.的動點時,問∠1、∠2、∠3之間的關(guān)系是否發(fā)生變化?(不必說理由)
(3)如果點P在A、B兩點外側(cè)運動時, (點P和點A、點B不重合)
①如圖2,當(dāng)點P在射線AB上運動時,∠1、∠2、∠3之間關(guān)系并說出理由.
②如圖3,當(dāng)點P在射線BA上運動時,∠1、∠2、∠3之間關(guān)系(不說理由)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在四邊形中,,.
(1)如圖1.連接,若,求證:.
(2)如圖2,點分別在線段上,滿足,求證:;
(3)若點在的延長線上,點在的延長線上,如圖3所示,仍然滿足,請寫出與的數(shù)量關(guān)系,并給出證明過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2018年12月26日,青鹽鐵路正式通車,作為沿線火車站之一的濱海港站帶領(lǐng)濱海人民正式邁入了“高鐵時代”,從鹽城乘火車去北京的時間也大大縮短如圖,OA、BC分別是普通列車和動車從鹽城開往北京的路程與時間的函數(shù)圖象請根據(jù)圖中的信息,解答下列問題:
根據(jù)圖象信息,普通列車比動車早出發(fā)______h,動車的平均速度是______;
分別求出OA、BC的函數(shù)表達式,并寫出自變量x的取值范圍;
動車出發(fā)多少小時追上普通列車?此時他們距離出發(fā)地多少千米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,點O為直線AB上一點,過O點作射線OC,使,將一直角三角板的直角頂點放在點O處,一邊ON在射線OA上,另一邊OM在直線AB的下方.
(1)將圖1中的三角板繞點O按逆時針方向旋轉(zhuǎn)至圖2的位置,使得ON落在射線OB上,此時三角板旋轉(zhuǎn)的角度為______度;
(2)在(1)旋轉(zhuǎn)過程中,當(dāng)旋轉(zhuǎn)至圖3的位置時,使得OM在∠BOC的內(nèi)部,ON落在直線AB下方,試探究∠COM與∠BON之間滿足什么等量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB:y=3x+3交x軸于點A;直線y=-x平移后經(jīng)過點B,交x軸于點C(7,0),另一直線y=kx-k交x軸于點D,交直線BC于點E,連接DB,BD⊥x軸.
(1)求直線BC的解析式和點B的坐標;
(2)若直線DE將△BDC的面積分為1:2的兩部分,求k的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com