【題目】如圖,某人在大樓30米高(PH=30)的窗口P處進(jìn)行觀測(cè),測(cè)得山坡上A處的俯角為15°,山腳B處的俯角為60°,已知該山坡的坡度i1,點(diǎn)P,H,B,C,A在同一個(gè)平面上,點(diǎn)H,B,C在同一條直線上,PHHC.A,B兩點(diǎn)間的距離是(  )

A. 15 B. 20 C. 20 D. 10

【答案】B

【解析】根據(jù)題意得:∠APB=60°15°=45°,PBH=60°,

PHHC,PH=30米,

PB= ==20 (),

tanABC==,

∴∠ABC=30°

∴∠ABP=180°PBHABC=180°60°30°=90°,

∴∠PAB=APB=45°,

AB=PB=20 ().

A.B兩點(diǎn)間的距離是:20米。

故選B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC 中,∠ACB=90°,AC=BC,AE BC 邊的中線,過點(diǎn)C CF⊥AE,垂足為點(diǎn) F,過點(diǎn) B BD⊥BC CF 的延長(zhǎng)線于點(diǎn) D.

(1)試證明:AE=CD;

(2)若 AC=12cm,求線段 BD 的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)為1,格點(diǎn)三角形(頂點(diǎn)是網(wǎng)格線的交點(diǎn)的三角形)ABC的頂點(diǎn)AC的坐標(biāo)分別為(﹣4,5),(﹣1,3).

1)請(qǐng)?jiān)谌鐖D所示的網(wǎng)格平面內(nèi)作出平面直角坐標(biāo)系;

2)請(qǐng)作出ABC關(guān)于y軸對(duì)稱的A1B1C1

3)寫出點(diǎn)B1的坐標(biāo);

4)求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AB=AC,BEACE,且DE分別是AB、AC的中點(diǎn),延長(zhǎng)BC至點(diǎn)F,使CF=CE
1)∠ABC的度數(shù).
2)求證:BE=FE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知,,則下列結(jié)論: ; ;③點(diǎn)P的平分線上,其中正確的是()

A.只有①B.只有②C.只有①②D.①②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,長(zhǎng)方體的長(zhǎng)為15,寬為10,高為20,點(diǎn)B離點(diǎn)C的距離為5。一只螞蟻如果要沿著長(zhǎng)方體的表面從點(diǎn)A爬到點(diǎn)B,爬行的最短路程是( )

A.25B.C.35D.無法確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某人為了測(cè)量小山頂上的塔ED的高,他在山下的點(diǎn)A處測(cè)得塔尖點(diǎn)D的仰角為45°,再沿AC方向前進(jìn)60 m到達(dá)山腳點(diǎn)B,測(cè)得塔尖點(diǎn)D的仰角為60°,塔底點(diǎn)E的仰角為30°,求塔ED的高度.(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC是直角三角形,∠BAC=90°,D是斜邊BC的中點(diǎn),E,F分別是ABAC邊上的點(diǎn),且DEDF

1)如圖1,試說明

2)如圖2,若AB=ACBE=12,CF=5,求DEF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正三角形的邊長(zhǎng)為

如圖①,正方形的頂點(diǎn)在邊上,頂點(diǎn)在邊上,在正三角形及其內(nèi)部,以點(diǎn)為位似中心,作正方形的位似正方形,且使正方形的面積最大(不要求寫作法);

中作出的正方形的邊長(zhǎng);

如圖②,在正三角形中放入正方形和正方形,使得在邊上,點(diǎn)、分別在邊、上,求這兩個(gè)正方形面積和的最大值和最小值,并說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案