【題目】如圖,已知,,則下列結(jié)論: ①; ②;③點(diǎn)P在的平分線上,其中正確的是()
A.只有①B.只有②C.只有①②D.①②③
【答案】D
【解析】
根據(jù)ABAE=ACAD可判斷①;證△ABD≌△ACE,推出∠B=∠C,根據(jù)AAS證明△BPE≌△CPD即可判斷②;連接AP,根據(jù)△BPE≌△CPD推出BP=CP,根據(jù)SAS證△ABP≌△ACP,推出∠1=∠2即可判斷③.
解:∵AB=AC,AD=AE,
∴ABAE=ACAD,
∴EB=DC,①正確;
∵在△ABD和△ACE中,,
∴△ABD≌△ACE(SAS),
∴∠B=∠C,
在△BPE和△CPD中,,
∴△BPE≌△CPD(AAS),②正確;
如圖,連接AP,
∵△BPE≌△CPD,
∴BP=CP,
在△ABP和△ACP中,,
∴△ABP≌△ACP(SAS),
∴∠1=∠2,
∴點(diǎn)P在∠BAC的角平分線上,③正確;
故選:D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是邊長為10的等邊三角形,P是AC邊上一動(dòng)點(diǎn),由A向C運(yùn)動(dòng)(與A、C不重合).
(Ⅰ)如圖1,若點(diǎn)Q是BC邊上一動(dòng)點(diǎn),與點(diǎn)P同時(shí)以相同的速度由C向B運(yùn)動(dòng)(與C、B不重合).求證:BP=AQ;
(Ⅱ)如圖2,若Q是CB延長線上一動(dòng)點(diǎn),與點(diǎn)P同時(shí)以相同的速度由B向CB延長線方向運(yùn)動(dòng)(Q不與B重合),過P作PE⊥AB于E,連接PQ交AB于D,在運(yùn)動(dòng)過程中線段ED的長是否發(fā)生變化?如果不變,求出線段ED的長;如果發(fā)生改變,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1是一種折疊式可調(diào)節(jié)的魚竿支架的示意圖,AE是地插,用來將支架固定在地面上,支架AB可繞A點(diǎn)前后轉(zhuǎn)動(dòng),用來調(diào)節(jié)AB與地面的夾角,支架CD可繞AB上定點(diǎn)C前后轉(zhuǎn)動(dòng),用來調(diào)節(jié)CD與AB的夾角,支架CD帶有伸縮調(diào)節(jié)長度的伸縮功能,已知BC=60cm.
(1)若支架AB與地面的夾角∠BAF=35°,支架CD與釣魚竿DB垂直,釣魚竿DB與地面AF平行,則支架CD的長度為 cm(精確到0.1cm);(參考數(shù)據(jù):sin35°≈0.57,cos35°≈0.82,tan35°≈0.70).
(2)如圖2,保持(1)中支架AB與地面的夾角不變,調(diào)節(jié)支架CD與AB的夾角,使得∠DCB=85°,若要使釣魚竿DB與地面AF仍然保持平行,則支架CD的長度應(yīng)該調(diào)節(jié)為多少?(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】利用配方法求出拋物線的頂點(diǎn)坐標(biāo)、對稱軸、最大值或最小值;若將拋物線先向左平移個(gè)單位,再向上平移個(gè)單位,所得拋物線的函數(shù)關(guān)系式為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)的圖象與兩坐標(biāo)軸分別交于,,三點(diǎn),一次函數(shù)的圖象與拋物線交于,兩點(diǎn).
求點(diǎn),,的坐標(biāo);
當(dāng)兩函數(shù)的函數(shù)值都隨著的增大而增大,求的取值范圍;
當(dāng)自變量滿足什么范圍時(shí),一次函數(shù)值大于二次函數(shù)值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某人在大樓30米高(即PH=30米)的窗口P處進(jìn)行觀測,測得山坡上A處的俯角為15°,山腳B處的俯角為60°,已知該山坡的坡度i為1∶,點(diǎn)P,H,B,C,A在同一個(gè)平面上,點(diǎn)H,B,C在同一條直線上,且PH⊥HC.則A,B兩點(diǎn)間的距離是( )
A. 15米 B. 20米 C. 20米 D. 10米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解下列各題:
(1)先化簡,再求代數(shù)式(的值,其中x=cos30°+;
(2)已知α是銳角,且sin(α+15°)=.計(jì)算-4cosα-(π-3.14)0+tanα+()-1的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=x2-2x-3的圖象與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,連接BC,點(diǎn)D為拋物線的頂點(diǎn),點(diǎn)P是第四象限的拋物線上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)D重合).
(1)求∠OBC的度數(shù);
(2)連接CD,BD,DP,延長DP交x軸正半軸于點(diǎn)E,且S△OCE=S四邊形OCDB,求此時(shí)P點(diǎn)的坐標(biāo);
(3)過點(diǎn)P作PF⊥x軸交BC于點(diǎn)F,求線段PF長度的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,以AC為斜邊向外作等腰直角三角形COA,已知BC=8,OB=10,則另一直角邊AB的長為__________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com