【題目】如圖,已知Rt△ABC中,∠C=90°,∠A=30°,AB=4.
(1)作AC邊上的垂直平分線DE,交AC于點D,交AB于點E(用尺規(guī)作圖法,保留作圖痕跡,不要求寫作法和證明):
(2)連接CE,求△BEC的周長.
【答案】
(1)解:如圖,DE為所作;
(2)解:∵,∠C=90°,∠A=30°,AB=4.
∴BC= AB=2,
∵DE垂直平分AC,
∴EC=EA,
∴△BEC的周長=BE+EC+BC
=BE+EA+BC
=AB+BC
=4+2
=6.
【解析】(1)利用基本作圖作AC的垂直平分線得到DE;(2)先利用含30度的直角三角形三邊的關系得到BC=2,再根據(jù)線段垂直平分線的性質得到EC=EA,然后利用等線段代換得到△BEC的周長=AB+BC=6.
【考點精析】根據(jù)題目的已知條件,利用線段垂直平分線的性質和含30度角的直角三角形的相關知識可以得到問題的答案,需要掌握垂直于一條線段并且平分這條線段的直線是這條線段的垂直平分線;線段垂直平分線的性質定理:線段垂直平分線上的點和這條線段兩個端點的距離相等;在直角三角形中,如果一個銳角等于30°,那么它所對的直角邊等于斜邊的一半.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線y=x2+bx+c與x軸交于A、B兩點(A點在B點左側),與y軸交于點C(0,﹣3),對稱軸是直線x=1,直線BC與拋物線的對稱軸交于點D.
(1)求拋物線的函數(shù)表達式;
(2)求直線BC的函數(shù)表達式;
(3)點E為y軸上一動點,CE的垂直平分線交CE于點F,交拋物線于P、Q兩點,且點P在第三象限.
①當線段PQ= AB時,求tan∠CED的值;
②當以點C、D、E為頂點的三角形是直角三角形時,請直接寫出點P的坐標.
溫馨提示:考生可以根據(jù)第(3)問的題意,在圖中補出圖形,以便作答.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)先化簡,再求值 x(x﹣1)+2x(x+1)﹣(3x﹣1)(2x﹣5),其中 x=2.
(2)解方程(3x﹣2)(2x﹣3)=(6x+5)(x﹣1)+15.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點B、F、C、E在同一條直線上,點A、D在直線BC的異側,AB=DE,AC=DF,BF=EC.
(1)求證:△ABC≌△DEF;
(2)若∠BFD=150°,求∠ACB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AD是△ABC的中線,E,F(xiàn)分別是AD和AD延長線上的點,且DE=DF,連結BF,CE.下列說法:①△ABD和△ACD面積相等;②∠BAD=∠CAD;③△BDF≌△CDE;④BF∥CE;其中正確的有( 。
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,過原點的直線y=k1x和y=k2x與反比例函數(shù)y= 的圖象分別交于兩點A,C和B,D,連接AB,BC,CD,DA.
(1)四邊形ABCD一定是四邊形;(直接填寫結果)
(2)四邊形ABCD可能是矩形嗎?若可能,試求此時k1 , k2之間的關系式;若不能,說明理由;
(3)設P(x1 , y1),Q(x2 , y2)(x2>x1>0)是函數(shù)y= 圖象上的任意兩點,a= ,b= ,試判斷a,b的大小關系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,D是等邊三角形ABC外一點,DB=DC,∠BDC=120°,點E,F(xiàn)分別在AB,AC上.
(1)求證:AD是BC的垂直平分線.
(2)若ED平分∠BEF,求證:FD平分∠EFC.
(3)在(2)的條件下,求∠EDF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c的圖象如圖所示,那么關于此二次函數(shù)的下列四個結論: ①a<0;②c>0;③b2﹣4ac>0;④ <0中,正確的結論有( )
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com