【題目】如圖,一次函數(shù)y1=﹣x+2的圖象與反比例函數(shù)y2= 的圖象相交于A,B兩點,點B的坐標為(2m,﹣m).
(1)求出m值并確定反比例函數(shù)的表達式;
(2)請直接寫出當x<m時,y2的取值范圍.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AD⊥BC,CE⊥AB,垂足分別為D、E,AD、CE交于點H,請你添加一個適當?shù)臈l件:_____,使△AEH≌△CEB.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下表是橘子的銷售額隨橘子賣出質(zhì)量的變化表:
質(zhì)量/千克 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | … |
銷售額/元 | 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | … |
(1)這個表反映了哪兩個變量之間的關(guān)系?哪個是自變量?哪個是因變量?
(2)當橘子賣出5千克時,銷售額是_______元.
(3)如果用表示橘子賣出的質(zhì)量,表示銷售額,按表中給出的關(guān)系,與之間的關(guān)系式為______.
(4)當橘子的銷售額是100元時,共賣出多少千克橘子?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,兩正方形在數(shù)軸上運動,起始狀態(tài)如圖所示.A、F表示的數(shù)分別為-2、10,大正方形的邊長為4個單位長度,小正方形的邊長為2個單位長度,兩正方形同時出發(fā),相向而行,小正方形的速度是大正方形速度的兩倍,兩個正方形從相遇到剛好完全離開用時2秒.完成下列問題:
(1)求起始位置D、E表示的數(shù);
(2)求兩正方形運動的速度;
(3)M、N分別是AD、EF中點,當正方形開始運動時,射線MA開始以15°/s的速度順時針旋轉(zhuǎn)至MD結(jié)束,射線NF開始以30°/s的速度逆時針旋轉(zhuǎn)至NE結(jié)束,若兩射線所在直線互相垂直時,求MN的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,正方形ABCD的位置如右圖所示,點A的坐標為(1,0),點D的坐標為(0,2).延長CB交x軸于點A1 , 作正方形A1B1C1C;延長C1B1交x軸于點A2 , 作正方形A2B2C2C1 , …按這樣的規(guī)律進行下去,第2017個正方形的面積為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,∠A=90°,AB=4,AC=3,M是AB上的動點(不與A,B重合),過M點作MN∥BC交AC于點N.以MN為直徑作⊙O,并在⊙O內(nèi)作內(nèi)接矩形AMPN.令A(yù)M=x.
(1)用含x的代數(shù)式表示△MNP的面積S;
(2)當x為何值時,⊙O與直線BC相切;
(3)在動點M的運動過程中,記△MNP與梯形BCNM重合的面積為y,試求y關(guān)于x的函數(shù)表達式,并求x為何值時,y的值最大,最大值是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠A=60°,AC=1,將△ABC繞點C順時針旋轉(zhuǎn)得△A1B1C1 , 且點A1落在邊AB邊上,取BB1的中點D,連接CD,則CD的長為( )
A.
B.
C.2
D.3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明在學習過程中,對教材中的一個有趣問題做如下探究:
(習題回顧)已知:如圖1,在中,,是角平分線,是高,、相交于點.求證:;
(變式思考)如圖2,在中,,是邊上的高,若的外角的平分線交的延長線于點,其反向延長線與邊的延長線交于點,則與還相等嗎?說明理由;
(探究延伸)如圖3,在中,上存在一點,使得,的平分線交于點.的外角的平分線所在直線與的延長線交于點.直接寫出與的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學為打造書香校園,計劃購進甲、乙兩種規(guī)格的書柜放置新購進的圖書,調(diào)查發(fā)現(xiàn),若購買一個乙種書柜比購買一個甲種書柜貴60元,若購買甲種書柜1個、乙種書柜2個,共需資金660元.
(1)甲、乙兩種書柜每個的價格分別是多少元?
(2)若該校計劃購進這兩種規(guī)格的書柜共20個,其中乙種書柜的數(shù)量不少于甲種書柜的數(shù)量,學校至多能夠提供資金4320元,請問學校有哪幾種購買方案.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com