【題目】已知數(shù)軸上有兩點(diǎn)AB,點(diǎn)A對(duì)應(yīng)的數(shù)是40,點(diǎn)B對(duì)應(yīng)的數(shù)是

求線段AB的長.

如圖2,O表示原點(diǎn),動(dòng)點(diǎn)P、T分別從BO兩點(diǎn)同時(shí)出發(fā)向左運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q從點(diǎn)A出發(fā)向右運(yùn)動(dòng),點(diǎn)PTQ的速度分別為5個(gè)單位長度秒、1個(gè)單位長度秒、2個(gè)單位長度秒,設(shè)運(yùn)動(dòng)時(shí)間為t

求點(diǎn)P、T、Q表示的數(shù)用含有t的代數(shù)式表示

在運(yùn)動(dòng)過程中,如果點(diǎn)M為線段PT的中點(diǎn),點(diǎn)N為線段OQ的中點(diǎn),試說明在運(yùn)動(dòng)過程中等量關(guān)系始終成立.

【答案】(1)120;(2)①點(diǎn)P表示的數(shù)為:;點(diǎn)T表示的數(shù)為:;點(diǎn)Q表示的數(shù)是;②見解析.

【解析】

根據(jù)點(diǎn)A對(duì)應(yīng)的數(shù)是40,點(diǎn)B對(duì)應(yīng)的數(shù)是,即可得到AB的長度;

根據(jù)題意即可得到結(jié)論;

根據(jù)題意得到,,根據(jù)線段中點(diǎn)的定義得到,于是得到結(jié)論.

解:線段AB的長;

點(diǎn)P表示的數(shù)為:;點(diǎn)T表示的數(shù)為:;點(diǎn)Q表示的數(shù)是;

,,

點(diǎn)M為線段PT的中點(diǎn),點(diǎn)N為線段OQ的中點(diǎn),

,,

,,

,

即在運(yùn)動(dòng)過程中等量關(guān)系始終成立.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了調(diào)查某小區(qū)居民的用水情況,隨機(jī)抽查了10戶家庭的月用水量,結(jié)果如下表:

月用水量(噸)

4

5

6

9

戶數(shù)

3

4

2

1

則關(guān)于這10戶家庭的月用水量,下列說法錯(cuò)誤的是 ( )
A.中位數(shù)是5噸
B.眾數(shù)是5噸
C.極差是3噸
D.平均數(shù)是5.3噸

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)計(jì)算:﹣3﹣(﹣4+7

2)計(jì)算:;

3)計(jì)算:;

4)計(jì)算:﹣14﹣(﹣22+6×(﹣);

5)化簡:3x2+5x5x2+3x;

6)化簡:6m2n)﹣3n+2m2).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知BADBCE均為等腰直角三角形,∠BAD=BCE=90°,點(diǎn)MDE的中點(diǎn).過點(diǎn)EAD平行的直線交射線AM于點(diǎn)N

(1)當(dāng)A,B,C三點(diǎn)在同一直線上時(shí)(如圖1),求證:MAN的中點(diǎn);

(2)將圖1中BCE繞點(diǎn)B旋轉(zhuǎn),當(dāng)AB,E三點(diǎn)在同一直線上時(shí)(如圖2),求證:CAN為等腰直角三角形;

(3)將圖1中BCE繞點(diǎn)B旋轉(zhuǎn)到圖3的位置時(shí),(2)中的結(jié)論是否仍然成立?若成立,試證明之;若不成立,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中點(diǎn)A(2,0),點(diǎn)P在射線 (x<0)上運(yùn)動(dòng),設(shè)點(diǎn)P的橫坐標(biāo)為a,以AP為直徑作⊙C,連接OP、PB,過點(diǎn)P作PQ⊥OP交⊙C于點(diǎn)Q.

(1)證明:∠AOP=∠BPQ;
(2)當(dāng)點(diǎn)P在運(yùn)動(dòng)的過程中,線段PQ的長度是否發(fā)生變化,若變化,請(qǐng)用含a的代數(shù)式表示PQ的長;若不變,求出PQ的長;
(3)當(dāng)tan∠APO= 時(shí),①求點(diǎn)Q坐標(biāo);②點(diǎn)D是圓上任意一點(diǎn),求QD+ OD的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC在平面直角坐標(biāo)系中的位置如圖所示.A2,3),B3,1),C﹣2,﹣2)三點(diǎn)在格點(diǎn)上.

1作出△ABC關(guān)于y軸對(duì)稱的△A1B1C1;

2)直接寫出△ABC關(guān)于x軸對(duì)稱的△A2B2C2的各點(diǎn)坐標(biāo);

3)求出△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,BAE+AED=180°,1=2,那么M=N(下面是推理過程,請(qǐng)你填空).

解:∵∠BAE+AED=180°(已知)

(同旁內(nèi)角互補(bǔ),兩直線平行)

∴∠BAE= (兩直線平行,內(nèi)錯(cuò)角相等)

∵∠1=2

∴∠BAE1=

MAE=

(內(nèi)錯(cuò)角相等,兩直線平行)

∴∠M=N(兩直線平行,內(nèi)錯(cuò)角相等)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,A、B兩點(diǎn)在數(shù)軸上對(duì)應(yīng)的數(shù)分別為﹣124

1)直接寫出A、B兩點(diǎn)之間的距離;

2)若在數(shù)軸上存在一點(diǎn)P,使得APPB,求點(diǎn)P表示的數(shù).

3)如圖2,現(xiàn)有動(dòng)點(diǎn)PQ,若點(diǎn)P從點(diǎn)A出發(fā),以每秒5個(gè)單位長度的速度沿?cái)?shù)軸向右運(yùn)動(dòng),同時(shí)點(diǎn)Q從點(diǎn)B出發(fā),以每秒2個(gè)單位長度的速度沿?cái)?shù)軸向左運(yùn)動(dòng),當(dāng)點(diǎn)Q到達(dá)原點(diǎn)O后立即以每秒3個(gè)單位長度的速度沿?cái)?shù)軸向右運(yùn)動(dòng),求:當(dāng)OP4OQ時(shí)的運(yùn)動(dòng)時(shí)間t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在第1個(gè)△ABA1中,∠B=20°,AB=A1B,在A1B上取一點(diǎn)C,延長AA1A2,使得A1A2=A1C;在A2C上取一點(diǎn)D,延長A1A2A3,使得A2A3=A2D;…,按此做法進(jìn)行下去,第n個(gè)三角形的以An為頂點(diǎn)的內(nèi)角的度數(shù)為( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案