【題目】十八大以來,某校已舉辦五屆校園藝術(shù)節(jié).為了弘揚中華優(yōu)秀傳統(tǒng)文化,每屆藝術(shù)節(jié)上都有一些班級表演經(jīng)典誦讀、民樂演奏、歌曲聯(lián)唱、民族舞蹈等節(jié)目.小穎對每屆藝術(shù)節(jié)表演這些節(jié)目的班級數(shù)進行統(tǒng)計,并繪制了如圖所示不完整的折線統(tǒng)計圖和扇形統(tǒng)計圖.

(1)五屆藝術(shù)節(jié)共有________個班級表演這些節(jié)日,班數(shù)的中位數(shù)為________,在扇形統(tǒng)計圖中,第四屆班級數(shù)的扇形圓心角的度數(shù)為________;

(2)補全折線統(tǒng)計圖;

(3)第六屆藝術(shù)節(jié),某班決定從這四項藝術(shù)形式中任選兩項表演(“經(jīng)典誦讀、民樂演奏、歌曲聯(lián)唱、民族舞蹈分別用,表示).利用樹狀圖或表格求出該班選擇兩項的概率.

【答案】(1)40,7,81°;(2)見解析;(3).

【解析】

1)根據(jù)圖表可得,五屆藝術(shù)節(jié)共有:;根據(jù)中位數(shù)定義和圓心角公式求解;(2)根據(jù)各屆班數(shù)畫圖;(3)用列舉法求解;

解:(1) 五屆藝術(shù)節(jié)共有:個,第四屆班數(shù):40×22.5%=9,第五屆40=13,第一至第三屆班數(shù):576,故班數(shù)的中位數(shù)為7,

第四屆班級數(shù)的扇形圓心角的度數(shù)為:3600×22.5%=81°

(2)折線統(tǒng)計圖如下;.

(3)樹狀圖如下.

所有情況共有12種,其中選擇兩項的共有2種情況,

所以選擇兩項的概率為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某數(shù)學(xué)興趣小組在探究函數(shù)y=|x2-4x+3|的圖象和性質(zhì)時,經(jīng)歷以下幾個學(xué)習(xí)過程:

(1)列表(完成以下表格)

x

-2

-1

0

1

2

3

4

5

6

y1=x2-4x+3

15

8

0

0

3

15

y=|x2-4x+3|

15

8

0

0

3

15

(2)描點并畫出函數(shù)圖象草圖(在備用圖1中描點并畫圖)

(3)根據(jù)圖象完成以下問題

()觀察圖象

函數(shù)y=|x2-4x+3|的圖象可由函數(shù)y1=x2-4x+3的圖象如何變化得到?

答:______

()數(shù)學(xué)小組探究發(fā)現(xiàn)直線y=8與函數(shù)y=|x2-4x+3|的圖象交于點EF,E(-18),F(5,8),則不等式|x2-4x+3|8的解集是______

()設(shè)函數(shù)y=|x2-4x+3|的圖象與x軸交于A、B兩點(B位于A的右側(cè)),與y軸交于點C

①求直線BC的解析式;

②探究應(yīng)用:將直線BC沿y軸平移m個單位后與函數(shù)y=|x2-4x+3|的圖象恰好有3個交點,求此時m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知矩形,,為邊上任意一點,連結(jié),,以為直徑作分別交,于點,連結(jié),

1)若點的中點,證明:

2)若為等腰三角形時,求的長.

3)作點關(guān)于直線的對稱點

①當(dāng)點落在線段上時,設(shè)線段,交于點,求的面積之比.

②在點的運動過程中,當(dāng)點落在四邊形內(nèi)時(不包括邊界),則的范圍是________(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖1,拋物線軸交于點,與軸交于點,且

1)求拋物線解析式;

2)如圖2,點是拋物線第一象限上一點,連接軸于點,設(shè)點的橫坐標(biāo)為,線段長為,求之間的函數(shù)關(guān)系式;

3)在(2)的條件下,過點作直線軸,在上取一點(點在第二象限),連接,使,連接并延長軸于點,過點于點,連接、.若時,求值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線軸于點,交軸正半軸于點,與過點的直線相交于另一點,過點軸,垂足為

1)求拋物線的表達(dá)式;

2)點在線段上(不與點,重合),過軸,交直線,交拋物線于點,于點,求的最大值;

3)若軸正半軸上的一動點,設(shè)的長為.是否存在,使以點為頂點的四邊形是平行四邊形?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題背景:如圖1,等腰ABC中,AB=AC,BAC=120°,作ADBC于點D,則DBC的中點,BAD=BAC=60°,于是 = =

遷移應(yīng)用:如圖2,ABCADE都是等腰三角形,BAC=∠DAE=120°D,E,C三點在同一條直線上,連接BD

求證:ADB≌△AEC

請直接寫出線段AD,BD,CD之間的等量關(guān)系式;

拓展延伸:如圖3,在菱形ABCD中,ABC=120°,在ABC內(nèi)作射線BM,作點C關(guān)于BM的對稱點E,連接AE并延長交BM于點F,連接CE,CF

證明CEF是等邊三角形;

AE=5,CE=2,求BF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,曲線AB是拋物線的一部分(其中A是拋物線與y軸的交點,B是頂點),曲線BC是雙曲線的一部分.曲線ABBC組成圖形W由點C開始不斷重復(fù)圖形W形成一組“波浪線”.若點,在該“波浪線”上,則m的值為________,n的最大值為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,ABAC10tanA2,BEAC于點E,D是線段BE上的一個動點,則的最小值是( )

A. B. C. D. 10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)先化簡,再求值:(a+b)(ab)+(a+b)2-2a2,其中a=2,b=2

(2)如圖①,小紅家陽臺上放置了個可折疊的曬衣架,圖②是曬衣架的側(cè)面示意圖,經(jīng)測量:OC=OD=126cm,OA=OB=56cm,且AB=32cm,求此時C,D兩點間的距離.

查看答案和解析>>

同步練習(xí)冊答案