【題目】已知:如圖,直線y1=x+1在平面直角坐標(biāo)系xOy中.
(1)在平面直角坐標(biāo)系xOy中畫出y2=﹣2x+4的圖象;
(2)求y1與y2的交點(diǎn)坐標(biāo);
(3)根據(jù)圖象直接寫出當(dāng)y1≥y2時(shí),x的取值范圍.
【答案】(1)y2=﹣2x+4的圖象如圖所示,見解析;(2)y1與y2的交點(diǎn)坐標(biāo)為(1,2);(3)x的取值范圍是x≥1.
【解析】
(1)依據(jù)函數(shù)解析式即可畫出y2=-2x+4的圖象;
(2)解方程組可得y1與y2的交點(diǎn)坐標(biāo);
(3)依據(jù)函數(shù)圖象以及交點(diǎn)坐標(biāo)即可得到當(dāng)y1≥y2時(shí),x的取值范圍.
(1)y2=﹣2x+4的圖象如圖所示:
(2)解方程組
,可得
,
∴y1與y2的交點(diǎn)坐標(biāo)為(1,2);
(3)當(dāng)y1≥y2時(shí),x的取值范圍是x≥1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,矩形OABC的頂點(diǎn)O與坐標(biāo)原點(diǎn)重合,A、C分別在坐標(biāo)軸上,點(diǎn)B的坐標(biāo)為(4,2),直線交AB,BC分別于點(diǎn)M,N,反比例函數(shù)的圖象經(jīng)過點(diǎn)M,N.
(1)求反比例函數(shù)的解析式;
(2)若點(diǎn)P在y軸上,且△OPM的面積與四邊形BMON的面積相等,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某天上午7:30,小芳在家通過滴滴打車軟件打車前往動(dòng)車站搭乘當(dāng)天上午8:30的動(dòng)車.記汽車的行駛時(shí)間為t小時(shí),行駛速度為v千米/小時(shí)(汽車行駛速度不超過60千米/小時(shí)).根據(jù)經(jīng)驗(yàn),v,t的一組對(duì)應(yīng)值如下表:
V(千米/小時(shí)) | 20 | 30 | 40 | 50 | 60 |
T(小時(shí)) | 0.6 | 0.4 | 0.3 | 0.25 | 0.2 |
(1)根據(jù)表中的數(shù)據(jù)描點(diǎn),求出平均速度v(千米/小時(shí))關(guān)于行駛時(shí)間t(小時(shí))的函數(shù)表達(dá)式;
(2)若小芳從開始打車到上車用了10分鐘,小芳想在動(dòng)車出發(fā)前半小時(shí)到達(dá)動(dòng)車站,若汽車的平均速度為32千米/小時(shí),小芳能否在預(yù)定的時(shí)間內(nèi)到達(dá)動(dòng)車站?請(qǐng)說明理由;
(3)若汽車到達(dá)動(dòng)車站的行駛時(shí)間t滿足0.3<t<0.5,求平均速度v的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,BC=AC=6,以BC為直徑的⊙O與邊AB相交于點(diǎn)D,DE⊥AC,垂足為點(diǎn)E.
(1)求證:點(diǎn)D是AB的中點(diǎn);
(2)求點(diǎn)O到直線DE的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》是中國傳統(tǒng)數(shù)學(xué)重要的著作,奠定了中國傳統(tǒng)數(shù)學(xué)的基本框架.《九章算術(shù)》中記
載:“今有圓材,埋在壁中,不知大小,以鋸鋸之,深一寸,鋸道長(zhǎng)一尺,間徑幾何?”(如圖①)
閱讀完這段文字后,小智畫出了一個(gè)圓柱截面示意圖(如圖②),其中BO⊥CD于點(diǎn)A,求間徑就是要求⊙O的直徑.再次閱讀后,發(fā)現(xiàn)AB=______寸,CD=____寸(一尺等于十寸),通過運(yùn)用有關(guān)知識(shí)即可解決這個(gè)問題.請(qǐng)你補(bǔ)全題目條件,并幫助小智求出⊙O的直徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直線l1:y=﹣2x+5與y軸交于點(diǎn)B,直線l2:y=kx+b與x軸交于點(diǎn)D(1,0),與y軸交于點(diǎn)C,兩直線交于點(diǎn)A(2,1).
(1)求直線l2的函數(shù)解析式.
(2)求兩直線與y軸圍成的三角形的面積.
(3)點(diǎn)P為l1上一動(dòng)點(diǎn),點(diǎn)Q為l2上一動(dòng)點(diǎn),點(diǎn)E(0,2),若以BE為一邊,且以點(diǎn)B,E,P,Q為頂點(diǎn)的四邊形為平行四邊形,直接寫出點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在筆直的鐵路上A、B兩點(diǎn)相距25km,C、D為兩村莊,DA=10km,CB=15km,DA⊥AB于A,CB⊥AB于B,現(xiàn)要在AB上建一個(gè)中轉(zhuǎn)站E,使得C、D兩村到E站的距離相等.求E應(yīng)建在距A多遠(yuǎn)處?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某游樂園有一個(gè)直徑為16米的圓形噴水池,噴水池的周邊有一圈噴水頭,噴出的水柱為拋物線,在距水池中心3米處達(dá)到最高,高度為5米,且各方向噴出的水柱恰好在噴水池中心的裝飾物處匯合.如圖所示,以水平方向?yàn)?/span>x軸,噴水池中心為原點(diǎn)建立直角坐標(biāo)系.
(1)求水柱所在拋物線(第一象限部分)的函數(shù)表達(dá)式;
(2)王師傅在噴水池內(nèi)維修設(shè)備期間,噴水管意外噴水,為了不被淋濕,身高1.8米的王師傅站立時(shí)必須在離水池中心多少米以內(nèi)?
(3)經(jīng)檢修評(píng)估,游樂園決定對(duì)噴水設(shè)施做如下設(shè)計(jì)改進(jìn):在噴出水柱的形狀不變的前提下,把水池的直徑擴(kuò)大到32米,各方向噴出的水柱仍在噴水池中心保留的原裝飾物(高度不變)處匯合,請(qǐng)?zhí)骄繑U(kuò)建改造后噴水池水柱的最大高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:由火柴棒拼出的一列圖形,第個(gè)圖形是由個(gè)等邊三角形拼成的,通過觀察,分析發(fā)現(xiàn):第8個(gè)圖形中平行四邊形的個(gè)數(shù)( ).
A.16B.18C.20D.22
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com