【題目】如圖(1),為直線上點(diǎn),過點(diǎn)作射線,,將一直角三角尺()的直角頂點(diǎn)放在點(diǎn)處,一邊在射線上,另一邊與都在直線的上方.
(1)若將圖(1)中的三角尺繞點(diǎn)以每秒的速度,沿順時(shí)針方向旋轉(zhuǎn)秒,當(dāng)恰好平分時(shí),如圖(2).
①求值;
②試說明此時(shí)平分;
(2)將圖(1)中的三角尺繞點(diǎn)順時(shí)針旋轉(zhuǎn),設(shè),, 當(dāng)在內(nèi)部時(shí),試求與的數(shù)量關(guān)系;
(3)若將圖(1)中的三角尺繞點(diǎn)以每秒的速度沿順時(shí)針方向旋轉(zhuǎn)的同時(shí),射線也繞點(diǎn)以每秒的速度沿順時(shí)針方向旋轉(zhuǎn),如圖(3),那么經(jīng)過多長(zhǎng)時(shí)間,射線第一次平分?請(qǐng)說明理由.
【答案】(1)①t=3s;②證明見解析;(2)β=α+60°;(3)經(jīng)過5秒OC平分∠MON.
【解析】
(1)①根據(jù)角平分線的定義計(jì)算即可;
②求出∠AON,∠CON的值即可判斷;
(2)根據(jù)題意列方程即可得到結(jié)論;
(3)設(shè)∠AON=5t,∠AOC=30°+8t,根據(jù)∠AOC-∠AON=∠CON,構(gòu)建方程即可解決問題.
解:(1)①如圖2中,∵∠AOC=30°,
∴∠BOC=180°-∠AOC=150°,
∵OM平分∠BOC,
∴∠COM=∠BOM=∠BOC=75°,
∠AON=180°-90°-75°=15°,
∴t==3s,
②當(dāng)t=3時(shí),∠AON=3t=15°,∠CON=30°-3t=15°,
∴∠AON=∠CON,
∴ON平分∠AOC;
(2)∵∠CON=30°-α=90°-β,
∴β=α+60°;
(3)∵OC平分∠MON,∠MON=90°,
∴∠CON=∠COM=45°,
∵三角板繞點(diǎn)O以每秒5°的速度,射線OC也繞O點(diǎn)以每秒8°的速度沿順時(shí)針方向旋轉(zhuǎn)一周,
∴設(shè)∠AON=5t,∠AOC=30°+8t,
∵∠AOC-∠AON=∠CON,
∴30°+8t-5t=45°,
解得t=5,
∴經(jīng)過5秒OC平分∠MON.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠ACB=90°,AC=BC=4,點(diǎn)D為AB的中點(diǎn),M,N分別在BC,AC上,且BM=CN現(xiàn)有以下四個(gè)結(jié)論:
①DN=DM; ② ∠NDM=90°; ③ 四邊形CMDN的面積為4; ④△CMN的面積最大為2.
其中正確的結(jié)論有( )
A. ①②④; B. ①②③; C. ②③④; D. ①②③④.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了鼓勵(lì)市民節(jié)約用水,我市居民使用自來水計(jì)費(fèi)方式實(shí)施階梯水價(jià),具體標(biāo)準(zhǔn)見表1,表2分別是小明、小麗、小斌、小宇四家2017年的年用水量和繳納水費(fèi)情況.
表1:大連市居民自來水實(shí)施階梯水價(jià)標(biāo)準(zhǔn)情況:
階梯 | 每戶年用水量(立方米) | 水價(jià)(含污水處理費(fèi))(元/立方米) |
第一階梯 | 0~m(含m) | a |
第二階梯 | m~240(含240) | 4.40 |
第三階梯 | 240以上 | 7.85 |
表2:四個(gè)家庭2017年的年用水量和繳納水費(fèi)情況:
家庭 | 小明 | 小麗 | 小斌 | 小宇 |
用水量(立方米) | 50 | 100 | 200 | 220 |
水費(fèi)(元) | 162.5 | 325 | 673 | 761 |
請(qǐng)你根據(jù)表1、表2提供的數(shù)據(jù)回答下列問題:
(1)寫出表1中的a,m的值;
(2)小穎家2017年使用自來水共繳納水費(fèi)827元,則她家2017年的年用水量是多少立方米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,DE=CE,連接AE并延長(zhǎng)交BC的延長(zhǎng)線于點(diǎn)F.
(1)求證:△ADE≌△FCE;
(2)若AB=2BC,∠F=36°,求∠B的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是由相同的花盆按一定的規(guī)律組成的形如正多邊形的圖案,其中第1個(gè)圖形共有6個(gè)花盆,第2個(gè)圖形一共有12個(gè)花盆,第3個(gè)圖形一共有20個(gè)花盆,…,則第10個(gè)圖形中花盆的個(gè)數(shù)為( 。
A. 110B. 120C. 132D. 140
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面是由同一型號(hào)的黑白兩種顏色的等邊三角形瓷磚按一定規(guī)律鋪設(shè)的圖形.仔細(xì)觀察圖形可知:
第1個(gè)圖形中有1塊黑色的瓷磚,可表示為;
第2個(gè)圖形中有3塊黑色的瓷磚,可表示為;
第3個(gè)圖形中有6塊黑色的瓷磚,可表示為;
則第個(gè)圖形中有__________塊黑色的瓷磚(為正整數(shù)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校舉行“每天鍛煉一小時(shí),健康生活一輩子”為主題的體育活動(dòng),并開展了以下體育項(xiàng)目:足球、乒乓球、籃球和羽毛球,要求每位學(xué)生必須且只能選擇一項(xiàng)。為了解選擇各項(xiàng)體育活動(dòng)的學(xué)生人數(shù),隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將獲得的數(shù)據(jù)進(jìn)行整理,繪制出以下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)統(tǒng)計(jì)圖回答問題:
(1)這次活動(dòng)一共調(diào)查了 名學(xué)生;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)求選擇籃球項(xiàng)目的人數(shù)在扇形統(tǒng)計(jì)圖中所占的百分比?
(4)若該學(xué)校有1500人,請(qǐng)你估計(jì)該學(xué)校選擇乒乓球項(xiàng)目的學(xué)生人數(shù)約是多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀理解:
類比定義:我們知道:分式和分?jǐn)?shù)有著很多的相似點(diǎn).如類比分?jǐn)?shù)的基本性質(zhì),我們得到了分式的基本性質(zhì);類比分?jǐn)?shù)的運(yùn)算法則,我們得到了分式的運(yùn)算法則等等.小學(xué)里,把分子比分母小的分?jǐn)?shù)叫做真分?jǐn)?shù),類似地,我們把分子整式的次數(shù)小于分母整式的次數(shù)的分式稱為真分式;反之,稱為假分式.
拓展定義:
對(duì)于任何一個(gè)分式都可以化成整式與真分式的和的形式,
如:;
.
理解定義:
(1)下列分式中,屬于真分式的是:____屬于假分式的是:_____(填序號(hào))
①;②;③;④.
拓展應(yīng)用:
(2)將分式化成整式與真分式的和的形式;
(3)將假分式化成整式與真分式的和的形式。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長(zhǎng)為8的正方形ABCD中,點(diǎn)O為AD上一動(dòng)點(diǎn)(4<OA<8),以O(shè)為圓心,OA的長(zhǎng)為半徑的圓交邊CD于點(diǎn)M,連接OM,過點(diǎn)M作⊙O的切線交邊BC于N.
(1)求證:△ODM∽△MCN;
(2)設(shè)DM=x,OA=R,求R關(guān)于x的函數(shù)關(guān)系式;
(3)在動(dòng)點(diǎn)O逐漸向點(diǎn)D運(yùn)動(dòng)(OA逐漸增大)的過程中,△CMN的周長(zhǎng)如何變化?說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com