【題目】綜合題
(1)【探索發(fā)現(xiàn)】如圖①,是一張直角三角形紙片,∠B=60°,小明想從中剪出一個以∠B為內角且面積最大的矩形,經過多次操作發(fā)現(xiàn),當沿著中位線DE、EF剪下時,所得的矩形的面積最大,隨后,他通過證明驗證了其正確性,并得出:矩形的最大面積與原三角形面積的比值為 .
(2)【拓展應用】如圖②,在△ABC中,BC=a,BC邊上的高AD=h,矩形PQMN的頂點P、N分別在邊AB、AC上,頂點Q、M在邊BC上,則矩形PQMN面積的最大值為 . (用含a,h的代數(shù)式表示)
(3)【靈活應用】如圖③,有一塊“缺角矩形”ABCDE,AB=32,BC=40,AE=20,CD=16,小明從中剪出了一個面積最大的矩形(∠B為所剪出矩形的內角),求該矩形的面積.
(4)【實際應用】如圖④,現(xiàn)有一塊四邊形的木板余料ABCD,經測量AB=50cm,BC=108cm,CD=60cm,且tanB=tanC= ,木匠徐師傅從這塊余料中裁出了頂點M、N在邊BC上且面積最大的矩形PQMN,求該矩形的面積.
【答案】
(1)
(2)
(3)
解:解:如圖1,延長BA、DE交于點F,延長BC、ED交于點G,延長AE、CD交于點H,取BF中點I,F(xiàn)G的中點K,
由題意知四邊形ABCH是矩形,
∵AB=32,BC=40,AE=20,CD=16,
∴EH=20、DH=16,
∴AE=EH、CD=DH,
在△AEF和△HED中,
∵ ,
∴△AEF≌△HED(ASA),
∴AF=DH=16,
同理△CDG≌△HDE,
∴CG=HE=20,
∴BI= =24,
∵BI=24<32,
∴中位線IK的兩端點在線段AB和DE上,
過點K作KL⊥BC于點L,
由(1)知矩形的最大面積為 ×BGBF= ×(40+20)×(32+16)=720,
答:該矩形的面積為720
(4)
如圖2,延長BA、CD交于點E,過點E作EH⊥BC于點H,
∵tanB=tanC= ,
∴∠B=∠C,
∴EB=EC,
∵BC=108cm,且EH⊥BC,
∴BH=CH= BC=54cm,
∵tanB= = ,
∴EH= BH= ×54=72cm,
在Rt△BHE中,BE= =90cm,
∵AB=50cm,
∴AE=40cm,
∴BE的中點Q在線段AB上,
∵CD=60cm,
∴ED=30cm,
∴CE的中點P在線段CD上,
∴中位線PQ的兩端點在線段AB、CD上,
由【拓展應用】知,矩形PQMN的最大面積為 BCEH=1944cm2,
答:該矩形的面積為1944cm2
【解析】解:(1)【探索發(fā)現(xiàn)】
∵EF、ED為△ABC中位線,
∴ED∥AB,EF∥BC,EF= BC,ED= AB,
又∠B=90°,
∴四邊形FEDB是矩形,
則 = = = ,
所以答案是: ;
⑵【拓展應用】
∵PN∥BC,
∴△APN∽△ABC,
∴ = ,即 = ,
∴PN=a﹣ PQ,
設PQ=x,
則S矩形PQMN=PQPN=x(a﹣ x)=﹣ x2+ax=﹣ (x﹣ )2+ ,
∴當PQ= 時,S矩形PQMN最大值為 ,
所以答案是: ;
【考點精析】本題主要考查了三角形中位線定理和矩形的性質的相關知識點,需要掌握連接三角形兩邊中點的線段叫做三角形的中位線;三角形中位線定理:三角形的中位線平行于三角形的第三邊,且等于第三邊的一半;矩形的四個角都是直角,矩形的對角線相等才能正確解答此題.
科目:初中數(shù)學 來源: 題型:
【題目】在﹣3、﹣2、﹣1、0、1、2這六個數(shù)中,隨機取出一個數(shù),記為m,若數(shù)m使關于x的分式方程 ﹣1= 的解是正實數(shù)或零,且使得的二次函數(shù)y=﹣x2+(2m﹣1)x+1的圖象,在x>1時,y隨x的增大而減小,則滿足條件的所有m之和是( )
A.﹣2
B.﹣1
C.0
D.2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD和正方形CEFG邊長分別為a和b,正方形CEFG繞點C旋轉,給出下列結論:①BE=DG;②BE⊥DG;③DE2+BG2=2a2+b2 , 其中正確結論是(填序號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若n是一個兩位正整數(shù),且n的個位數(shù)字大于十位數(shù)字,則稱n為“兩位遞增數(shù)”(如13,35,56等).在某次數(shù)學趣味活動中,每位參加者需從由數(shù)字1,2,3,4,5,6構成的所有的“兩位遞增數(shù)”中隨機抽取1個數(shù),且只能抽取一次.
(1)寫出所有個位數(shù)字是5的“兩位遞增數(shù)”;
(2)請用列表法或樹狀圖,求抽取的“兩位遞增數(shù)”的個位數(shù)字與十位數(shù)字之積能被10整除的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“大美濕地,水韻鹽城”.某校數(shù)學興趣小組就“最想去的鹽城市旅游景點”隨機調查了本校部分學生,要求每位同學選擇且只能選擇一個最想去的景點,下面是根據(jù)調查結果進行數(shù)據(jù)整理后繪制出的不完整的統(tǒng)計圖:
請根據(jù)圖中提供的信息,解答下列問題:
(1)求被調查的學生總人數(shù);
(2)補全條形統(tǒng)計圖,并求扇形統(tǒng)計圖中表示“最想去景點D”的扇形圓心角的度數(shù);
(3)若該校共有800名學生,請估計“最想去景點B“的學生人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,AB=4 ,點E為線段OB上一點(不與O,B重合),作CE⊥OB,交⊙O于點C,垂足為點E,作直徑CD,過點C的切線交DB的延長線于點P,AF⊥PC于點F,連接CB.
(1)求證:CB是∠ECP的平分線;
(2)求證:CF=CE;
(3)當 = 時,求劣弧 的長度(結果保留π)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一個不透明的盒子里,裝有四個分別標有數(shù)字﹣1,﹣2,﹣3,﹣4的小球,它們的形狀、大小、質地等完全相同.小強先從盒子里隨機取出一個小球,記下數(shù)字為x;放回盒子搖勻后,再由小華隨機取出一個小球,記下數(shù)字為y.
(1)用列表法或畫樹狀圖表示出(x,y)的所有可能出現(xiàn)的結果;
(2)求小強、小華各取一次小球所確定的點(x,y)落在一次函數(shù)y=x﹣1圖象上的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com