【題目】如圖,AB是⊙O的直徑,AB=4 ,點(diǎn)E為線段OB上一點(diǎn)(不與O,B重合),作CE⊥OB,交⊙O于點(diǎn)C,垂足為點(diǎn)E,作直徑CD,過(guò)點(diǎn)C的切線交DB的延長(zhǎng)線于點(diǎn)P,AF⊥PC于點(diǎn)F,連接CB.
(1)求證:CB是∠ECP的平分線;
(2)求證:CF=CE;
(3)當(dāng) = 時(shí),求劣弧 的長(zhǎng)度(結(jié)果保留π)

【答案】
(1)證明:∵OC=OB,

∴∠OCB=∠OBC,

∵PF是⊙O的切線,CE⊥AB,

∴∠OCP=∠CEB=90°,

∴∠PCB+∠OCB=90°,∠BCE+∠OBC=90°,

∴∠BCE=∠BCP,

∴BC平分∠PCE


(2)證明:連接AC.

∵AB是直徑,

∴∠ACB=90°,

∴∠BCP+∠ACF=90°,∠ACE+∠BCE=90°,

∵∠BCP=∠BCE,

∴∠ACF=∠ACE,

∵∠F=∠AEC=90°,AC=AC,

∴△ACF≌△ACE,

∴CF=CE.


(3)解:作BM⊥PF于M.則CE=CM=CF,設(shè)CE=CM=CF=4a,PC=4a,PM=a,

∵△BMC∽△PMB,

= ,

∴BM2=CMPM=3a2,

∴BM= a,

∴tan∠BCM= = ,

∴∠BCM=30°,

∴∠OCB=∠OBC=∠BOC=60°,

的長(zhǎng)= = π


【解析】(1)根據(jù)等角的余角相等證明即可;(2)欲證明CF=CE,只要證明△ACF≌△ACE即可;(3)作BM⊥PF于M.則CE=CM=CF,設(shè)CE=CM=CF=4a,PC=4a,PM=a,利用相似三角形的性質(zhì)求出BM,求出tan∠BCM的值即可解決問(wèn)題;
【考點(diǎn)精析】本題主要考查了垂徑定理和切線的性質(zhì)定理的相關(guān)知識(shí)點(diǎn),需要掌握垂徑定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條。磺芯的性質(zhì):1、經(jīng)過(guò)切點(diǎn)垂直于這條半徑的直線是圓的切線2、經(jīng)過(guò)切點(diǎn)垂直于切線的直線必經(jīng)過(guò)圓心3、圓的切線垂直于經(jīng)過(guò)切點(diǎn)的半徑才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列運(yùn)算正確的是(
A.sin60°=
B.a6÷a2=a3
C.(﹣2)0=2
D.(2a2b)3=8a6b3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】綜合題

(1)【探索發(fā)現(xiàn)】如圖①,是一張直角三角形紙片,∠B=60°,小明想從中剪出一個(gè)以∠B為內(nèi)角且面積最大的矩形,經(jīng)過(guò)多次操作發(fā)現(xiàn),當(dāng)沿著中位線DE、EF剪下時(shí),所得的矩形的面積最大,隨后,他通過(guò)證明驗(yàn)證了其正確性,并得出:矩形的最大面積與原三角形面積的比值為
(2)【拓展應(yīng)用】如圖②,在△ABC中,BC=a,BC邊上的高AD=h,矩形PQMN的頂點(diǎn)P、N分別在邊AB、AC上,頂點(diǎn)Q、M在邊BC上,則矩形PQMN面積的最大值為 . (用含a,h的代數(shù)式表示)
(3)【靈活應(yīng)用】如圖③,有一塊“缺角矩形”ABCDE,AB=32,BC=40,AE=20,CD=16,小明從中剪出了一個(gè)面積最大的矩形(∠B為所剪出矩形的內(nèi)角),求該矩形的面積.
(4)【實(shí)際應(yīng)用】如圖④,現(xiàn)有一塊四邊形的木板余料ABCD,經(jīng)測(cè)量AB=50cm,BC=108cm,CD=60cm,且tanB=tanC= ,木匠徐師傅從這塊余料中裁出了頂點(diǎn)M、N在邊BC上且面積最大的矩形PQMN,求該矩形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:3tan30°+|2﹣ |+( 1﹣(3﹣π)0﹣(﹣1)2017

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形紙片ABCD中,AB=5,BC=3,先按圖(2)操作:將矩形紙片ABCD沿過(guò)點(diǎn)A的直線折疊,使點(diǎn)D落在邊AB上的點(diǎn)E處,折痕為AF;再按圖(3)操作,沿過(guò)點(diǎn)F的直線折疊,使點(diǎn)C落在EF上的點(diǎn)H處,折痕為FG,則A、H兩點(diǎn)間的距離為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】中華文明,源遠(yuǎn)流長(zhǎng);中華漢字,寓意深廣.為傳承中華優(yōu)秀傳統(tǒng)文化,某校團(tuán)委組織了一次全校3000名學(xué)生參加的“漢字聽(tīng)寫”大賽.為了解本次大賽的成績(jī),校團(tuán)委隨機(jī)抽取了其中200名學(xué)生的成績(jī)作為樣本進(jìn)行統(tǒng)計(jì),制成如下不完整的統(tǒng)計(jì)圖表:
頻數(shù)頻率分布表

成績(jī)x(分)

頻數(shù)(人)

頻率

50≤x<60

10

0.05

60≤x<70

30

0.15

70≤x<80

40

n

80≤x<90

m

0.35

90≤x≤100

50

0.25

根據(jù)所給信息,解答下列問(wèn)題:

(1)m= , n=
(2)補(bǔ)全頻數(shù)分布直方圖;
(3)這200名學(xué)生成績(jī)的中位數(shù)會(huì)落在分?jǐn)?shù)段;
(4)若成績(jī)?cè)?0分以上(包括90分)為“優(yōu)”等,請(qǐng)你估計(jì)該校參加本次比賽的3000名學(xué)生中成績(jī)是“優(yōu)”等的約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等腰△ABC中,AB=AC=4cm,∠B=30°,點(diǎn)P從點(diǎn)B出發(fā),以 cm/s的速度沿BC方向運(yùn)動(dòng)到點(diǎn)C停止,同時(shí)點(diǎn)Q從點(diǎn)B出發(fā),以1cm/s的速度沿BA﹣AC方向運(yùn)動(dòng)到點(diǎn)C停止,若△BPQ的面積為y(cm2),運(yùn)動(dòng)時(shí)間為x(s),則下列最能反映y與x之間函數(shù)關(guān)系的圖象是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,則下列6個(gè)代數(shù)式:ab、ac、a+b+c、2a+b、2a﹣b中,其值為正的式子的個(gè)數(shù)是(
A.2個(gè)
B.3個(gè)
C.4個(gè)
D.5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,等邊△ABC的邊長(zhǎng)是2,D、E分別為AB、AC的中點(diǎn),延長(zhǎng)BC至點(diǎn)F,使CF= BC,連接CD和EF.

(1)求證:DE=CF;
(2)求EF的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案