【題目】如圖,在RtΔABC中,∠C=90°,∠ABC=30°,AB=8,將△ABC沿CB方向向右平移得到△DEF.若四邊形ABED的面積為8,則平移距離為__.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC的頂點坐標(biāo)分別為A(-2,1),B(-3,-2),C(1,-2).把△ABC向上平移4個單位長度,再向右平移3個單位長度,得到△A′B′C′.
(1)在圖中畫出△A′B′C′,并寫出點A′,B′,C′的坐標(biāo);
(2)連接A′C和A′A,求三角形AA′C的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠DAC=90°,△ABC是等邊三角形,點P為射線AD上任意一點(點P與點A不重合),連結(jié)CP,將線段CP繞點C順時針旋轉(zhuǎn)60°得到線段CQ,連結(jié)QB并延長交直線AD于點E.
(1)如圖,求∠QEP的度數(shù);
(2)如圖,若∠DAC=135°,∠ACP=15°,且AC=4,求BQ的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)軸上點對應(yīng)的數(shù)分別是、,為數(shù)軸上兩個動點,它們同時向右運(yùn)動.點從點出發(fā),速度為每秒個單位長度;點從點出發(fā),速度為點的倍,點為原點.
(1)當(dāng)運(yùn)動秒時,點對應(yīng)的數(shù)分別是 、 .
(2)求運(yùn)動多少秒時,點中恰有一個點為另外兩個點所連線段的中點?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點A、B在數(shù)軸上分別表示有理數(shù)a、b,A、B兩點之間的距離表示為AB,在數(shù)軸上A、B兩點之間的距離AB=|a﹣b|.
利用數(shù)形結(jié)合思想回答下列問題:
(1)數(shù)軸上表示1和3兩點之間的距離 .
(2)數(shù)軸上表示﹣12和﹣6的兩點之間的距離是 .
(3)數(shù)軸上表示x和1的兩點之間的距離表示為 .
(4)若x表示一個有理數(shù),且﹣4<x<2,則|x﹣2|+|x+4|= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(3分)如圖,在直角坐標(biāo)系中,直線與坐標(biāo)軸交于A、B兩點,與雙曲線()交于點C,過點C作CD⊥x軸,垂足為D,且OA=AD,則以下結(jié)論:
①;
②當(dāng)0<x<3時,;
③如圖,當(dāng)x=3時,EF=;
④當(dāng)x>0時,隨x的增大而增大,隨x的增大而減。
其中正確結(jié)論的個數(shù)是( )
A.1 B.2 C.3 D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把下列各數(shù)填在相應(yīng)的大括號內(nèi):
1,-0.1,-789,25,0,-20,-3.14,
正整數(shù)集{___…}; 負(fù)整數(shù)集{___…},
正分?jǐn)?shù)集{____…}; 負(fù)分?jǐn)?shù)集{____…};
正有理數(shù)集{______…}; 負(fù)有理數(shù)集{______…}.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某防洪指揮部發(fā)現(xiàn)長江邊一處長500米,高10米,背水坡的坡角為45°的防洪大堤(橫斷面為梯形ABCD)急需加固.經(jīng)調(diào)查論證,防洪指揮部專家組制定的加固方案是:背水坡面用土石進(jìn)行加固,并使上底加寬3米,加固后背水坡EF的坡比i=1:.
(1)求加固后壩底增加的寬度AF;
(2)求完成這項工程需要土石多少立方米?(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料:
問題:如圖1,在平行四邊形ABCD中,E是AD上一點,AE=AB,∠EAB=60°,過點E作直線EF,在EF上取一點G,使得∠EGB=∠EAB,連接AG.
求證:EG =AG+BG.
小明同學(xué)的思路是:作∠GAH=∠EAB交GE于點H,構(gòu)造全等三角形,經(jīng)過推理解決問題.
參考小明同學(xué)的思路,探究并解決下列問題:
(1)完成上面問題中的證明;
(2)如果將原問題中的“∠EAB=60°”改為“∠EAB=90°”,原問題中的其它條件不變(如圖2),請?zhí)骄烤段EG、AG、BG之間的數(shù)量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com