如圖1,已知拋物線y=ax2-2ax+b經(jīng)過梯形OABC的四個頂點,若BC=10,梯形OABC的面積為18.
(1)求拋物線解析式;
(2)將圖1中梯形OABC的上下底邊所在的直線OA、CB以相同的速度同時向上平移,平移后的兩條直線分別交拋物線于點O1、A1、C1、B1,得到如圖2的梯形O1A1B1C1.設(shè)梯形O1A1B1C1的面積為S,A1、B1的坐標(biāo)分別為(x1,y1)、(x2,y2).用含S的代數(shù)式表示x2-x1,并求出當(dāng)S=36時點A1的坐標(biāo);
(3)如圖3,設(shè)圖1中點D坐標(biāo)為(1,3),M為拋物線的頂點,動點P從點B出發(fā),以每秒1個單位長度的速度沿著線段BC運動,動點Q從點D出發(fā),以與點P相同的速度沿著線段DM運動.P、Q兩點同時出發(fā),當(dāng)點Q到達點M時,P、Q兩點同時停止運動.設(shè)P、Q兩點的運動時間為t,是否存在某一時刻t,使得直線PQ、直線AB、x軸圍成的三角形與直線PQ、直線AB、拋物線的對稱軸圍成的三角形相似?若存在,請求出t的值;若不存在,請說明理由.
(1)∵y=ax2-2ax+b=a(x-1)2-a+b,
∴對稱軸為:直線x=1,
∴點A的坐標(biāo)為(2,0);
∵BC=10,梯形OABC的面積為18,
∴梯形OABC的高為:18×2÷(10+2)=3,
∴B(10÷2+1,3),即B(6,3),
C(1-10÷2,3),即C(-4,3).
將O(0,0),B(6,3)代入y=ax2-2ax+b,
b=0
36a-12a+b=3

解得
a=
1
8
b=0
,
∴拋物線解析式為:y=
1
8
x2-
1
4
x;

(2)由題意得y2-y1=3,y2-y1=
1
8
x22-
1
4
x2-
1
8
x12+
1
4
x1=3,
得:(x2-x1)[
1
8
(x2+x1)-
1
4
]=3①,
S=
2(x1-1+x2-1)×3
2
=3(x1+x2)-6,
得:x1+x2=
S
3
+2②,
把②代入①并整理得:x2-x1=
72
s
(S>0),
當(dāng)s=36時,
x2+x1=14
x2-x1=2
,
解得:
x1=6
x2=8
,
把x1=6代入拋物線解析式,得y1=
1
8
×62-
1
4
×6=3,
∴點A1(6,3);

(3)存在t=
20
7
秒,可使直線PQ、直線AB、x軸圍成的三角形與直線PQ、直線AB、拋物線的對稱軸圍成的三角形相似.理由如下:
易知直線AB的解析式為y=
3
4
x-
3
2
,可得直線AB與對稱軸的交點E的坐標(biāo)為(1,-
3
4
),
∴BD=5,DE=
15
4
,DP=5-t,DQ=t,
當(dāng)PQAB時,
DQ
DE
=
DP
DB
,
t
15
4
=
5-t
5
,解得t=
15
7

設(shè)直線PQ與直線AB、x軸的交點分別為點F、G.假設(shè)直線PQ、直線AB、x軸圍成的三角形與直線PQ、直線AB、拋物線的對稱軸圍成的三角形相似.下面分兩種情況討論:
①當(dāng)0<t<
15
7
時,如圖3-1;
∵△FQE△FAG,
∴∠FGA=∠FEQ,
∴∠DPQ=∠DEB;
易得△DPQ△DEB,
DQ
DB
=
DP
DE
,即
t
5
=
5-t
15
4
,
解得t=
20
7
15
7
,
∴t=
20
7
不合題意,舍去;
②當(dāng)
15
7
<t<3
1
8
時,如圖3-2;
∵△FAG△FQE,
∴∠FAG=∠FQE,
∵∠DQP=∠FQE,∠FAG=∠EBD,
∴∠DQP=∠DBE,
易得△DPQ△DEB,
DQ
DB
=
DP
DE
,即
t
5
=
5-t
15
4
,
解得t=
20
7
,符合題意.
綜上,可知當(dāng)t=
20
7
秒時,直線PQ、直線AB、x軸圍成的三角形與直線PQ、直線AB、拋物線的對稱軸圍成的三角形相似.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:在平面直角坐標(biāo)系中,拋物線y=-
1
4
x2+bx+3
交x軸于A、B兩點,交y軸于點C,且對稱軸為x=-2,點P(0,t)是y軸上的一個動點.

(1)求拋物線的解析式及頂點D的坐標(biāo).
(2)如圖1,當(dāng)0≤t≤4時,設(shè)△PAD的面積為S,求出S與t之間的函數(shù)關(guān)系式;S是否有最小值?如果有,求出S的最小值和此時t的值.
(3)如圖2,當(dāng)點P運動到使∠PDA=90°時,Rt△ADP與Rt△AOC是否相似?若相似,求出點P的坐標(biāo);若不相似,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線y=4x2-7x+4與直線y=x+b相交于A、B兩點.
(1)求b的取值范圍;
(2)當(dāng)AB=2時,求b的值;
(3)設(shè)坐標(biāo)原點為O,在(2)的條件下,求△AOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在直角坐標(biāo)系中,二次函數(shù)的頂點為C(4,-3),且在x軸上截得的線段AB=6,則二次函數(shù)的表達式為______;若拋物線與y軸交于點D,則四邊形DACB的面積是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知平面直角坐標(biāo)系xOy中,點A(m,6),B(n,1)為兩動點,其中0<m<3,連接OA,OB,OA⊥OB.
(1)求證:mn=-6;
(2)當(dāng)S△AOB=10時,拋物線經(jīng)過A,B兩點且以y軸為對稱軸,求拋物線對應(yīng)的二次函數(shù)的關(guān)系式;
(3)在(2)的條件下,設(shè)直線AB交y軸于點F,過點F作直線l交拋物線于P,Q兩點,問是否存在直線l,使S△POF:S△QOF=1:3?若存在,求出直線l對應(yīng)的函數(shù)關(guān)系式;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,小明的父親在相距2米的兩棵樹間拴了一根繩子,給小明做了一個簡易的秋千.拴繩子的地方距地面高都是2.5米,繩子自然下垂呈拋物線狀,身高1米的小明距較近的那棵樹0.5米時,頭部剛好接觸到繩子,
(1)選取合適的點作為原點,建立直角坐標(biāo)系,求出拋物線的解析式;
(2)求繩子的最低點距地面的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知正方形的邊長為x,面積為y
(1)寫出y與x的函數(shù)關(guān)系式;
(2)當(dāng)面積為25時,正方形的邊長是多少?
(3)畫出此函數(shù)的圖象.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,一個小球由靜止開始在一個斜坡上向下滾動,通過儀器觀察得到小球滾動的距離s(m)與時間t(s)的數(shù)據(jù)如下表.那么s與t之間的函數(shù)關(guān)系式是s=______.
時間t/s1234
距離s/m281832

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在矩形ABCD中,AB=2AD,線段EF=10.在EF上取一點M,分別以EM、MF為一邊作矩形EMNH、矩形MFGN,使矩形MFGN矩形ABCD.令MN=x,當(dāng)x為何值時,矩形EMNH的面積S有最大值,最大值是多少?

查看答案和解析>>

同步練習(xí)冊答案