【題目】某校九年級某班學(xué)生準(zhǔn)備去購買《英漢詞典》一書,此書的標(biāo)價為20元.現(xiàn)A、B兩書店都有此書出售,A店按如下方法促銷:若只購買1本,則按標(biāo)價銷售;當(dāng)一次性購買多于1本,但不多于20本時,每多購買一本,每本的售價在標(biāo)價的基礎(chǔ)上優(yōu)惠2%(例如,買2本每本的售價優(yōu)惠2%,買3本每本的售價優(yōu)惠4%,依此類推);當(dāng)購買多于20本時,每本的售價為12元.B書店一律按標(biāo)價的7折銷售.
(1)試分別寫出在兩書店購買此書的總價yA、yB與購書本數(shù)之間的函數(shù)關(guān)系式.
(2)若該班一次購買多于20本,去哪家書店購買更合算?為什么?若要一次性購買不多于20本,先寫出y(y=yA﹣yB)與購書本數(shù)x之間的函數(shù)關(guān)系式,畫出其函數(shù)圖象,再利用函數(shù)圖象分析去哪家書店購買更合算.
【答案】(1)當(dāng)時, ;當(dāng)x>20時,;yB=14x;(2)y=yA﹣yB=,畫圖象,見解析;若購書少于16本,則到B書店購買更合算;若購書16本,到A,B購書的費用一樣;若購書超過16本但不多于20本,則到A書店購書更合算.
【解析】
(1)分別根據(jù)兩個書店購書的優(yōu)惠方案得出y與x的函數(shù)關(guān)系式即可;
(2)首先得出y與x的函數(shù)關(guān)系式,進(jìn)而畫出圖象,利用圖象分析得出答案.
解:(1)設(shè)購買x本,則在A書店購書的總費用為:
當(dāng)時,
當(dāng)x>20時,
在B書店購書的總費用為:yB=20×0.7x=14x;
(2)當(dāng)x>20時,顯然yA<yB,即到A書店購買更合算,
當(dāng)0<x≤20時,
y=yA﹣yB=
當(dāng)時,解得:x1=0,x2=16,
畫出圖象:
由圖象可得出:當(dāng)0<x<16時,y>0,
當(dāng)x=16時,y=0,
當(dāng)20>x>16時,y<0,
綜上所述,若購書少于16本,則到B書店購買更合算;若購書16本,到A,B購書的費用一樣;
若購書超過16本但不多于20本,則到A書店購書更合算.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形木框ABCD中,AB=2AD=4,將其按順時針變形為ABC′D′,當(dāng)∠AD′B=90°時,四邊形對稱中心O經(jīng)過的路徑長為( 。
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=mx2﹣4mx+2m+1與x軸交于A(x1,0),B(x2,0)兩點,與y軸交于點C,且x2﹣x1=2.
(1)求拋物線的解析式;
(2)E是拋物線上一點,∠EAB=2∠OCA,求點E的坐標(biāo);
(3)設(shè)拋物線的頂點為D,動點P從點B出發(fā),沿拋物線向上運動,連接PD,過點P做PQ⊥PD,交拋物線的對稱軸于點Q,以QD為對角線作矩形PQMD,當(dāng)點P運動至點(5,t)時,求線段DM掃過的圖形面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=x+2與x軸交于A、B兩點,交y軸于點C.
(1)判斷△ABC的形狀,并說明理由.
(2)在拋物線對稱軸上是否存在一點P,使得以A、C、P為頂點的三角形是等腰三角形?若存在,求出點P的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,C,D是⊙O上的點,且OC∥BD,AD分別與BC,OC相交于點E,F(xiàn),則下列結(jié)論:
①AD⊥BD;②∠AOC=∠AEC;③CB平分∠ABD;④AF=DF;⑤BD=2OF;⑥△CEF≌△BED,其中一定成立的是( )
A. ②④⑤⑥ B. ①③⑤⑥ C. ②③④⑥ D. ①③④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在同一直角坐標(biāo)系中,函數(shù)和函數(shù)(m是常數(shù),且)的圖象可能是( )
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,∠C=90°,AC=BC,將△ABC繞點A順時針方向旋轉(zhuǎn)60°到△AB'C'的位置,連接C′B,C′B=﹣1,則AC=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC在平面直角坐標(biāo)系中,三個頂點坐標(biāo)分別為A(0,3)、B(3、4)、C(2,2)(網(wǎng)格中每個正方形的邊長是1個單位長度).
(1)以點B為位似中心,在網(wǎng)格內(nèi)畫出△A′BC′,使△A′BC′與△ABC位似,且位似比為2:1,則點C′的坐標(biāo)是______;
(2)△A′BC′的面積是_______平方單位;
(3)在x軸上找出點P,使得點P到B與點A距離之和最小,請直接寫出P點的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com