【題目】某校九年級某班學(xué)生準(zhǔn)備去購買《英漢詞典》一書,此書的標(biāo)價為20元.現(xiàn)A、B兩書店都有此書出售,A店按如下方法促銷:若只購買1本,則按標(biāo)價銷售;當(dāng)一次性購買多于1本,但不多于20本時,每多購買一本,每本的售價在標(biāo)價的基礎(chǔ)上優(yōu)惠2%(例如,買2本每本的售價優(yōu)惠2%,買3本每本的售價優(yōu)惠4%,依此類推);當(dāng)購買多于20本時,每本的售價為12元.B書店一律按標(biāo)價的7折銷售.

1)試分別寫出在兩書店購買此書的總價yA、yB與購書本數(shù)之間的函數(shù)關(guān)系式.

2)若該班一次購買多于20本,去哪家書店購買更合算?為什么?若要一次性購買不多于20本,先寫出yyyAyB)與購書本數(shù)x之間的函數(shù)關(guān)系式,畫出其函數(shù)圖象,再利用函數(shù)圖象分析去哪家書店購買更合算.

【答案】1)當(dāng)時, ;當(dāng)x20時,;yB14x;(2yyAyB,畫圖象,見解析;若購書少于16本,則到B書店購買更合算;若購書16本,到AB購書的費用一樣;若購書超過16本但不多于20本,則到A書店購書更合算.

【解析】

1)分別根據(jù)兩個書店購書的優(yōu)惠方案得出yx的函數(shù)關(guān)系式即可;

2)首先得出yx的函數(shù)關(guān)系式,進(jìn)而畫出圖象,利用圖象分析得出答案.

解:(1)設(shè)購買x本,則在A書店購書的總費用為:

當(dāng)時,

當(dāng)x>20時,

B書店購書的總費用為:yB20×0.7x14x;

2)當(dāng)x20時,顯然yAyB,即到A書店購買更合算,

當(dāng)0x≤20時,

yyAyB

當(dāng)時,解得:x10x216

畫出圖象:

由圖象可得出:當(dāng)0x16時,y0,

當(dāng)x16時,y0,

當(dāng)20x16時,y0,

綜上所述,若購書少于16本,則到B書店購買更合算;若購書16本,到A,B購書的費用一樣;

若購書超過16本但不多于20本,則到A書店購書更合算.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形木框ABCD中,AB2AD4,將其按順時針變形為ABCD,當(dāng)∠ADB90°時,四邊形對稱中心O經(jīng)過的路徑長為( 。

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線ymx24mx+2m+1x軸交于Ax10),Bx2,0)兩點,與y軸交于點C,且x2x12

1)求拋物線的解析式;

2E是拋物線上一點,∠EAB2OCA,求點E的坐標(biāo);

3)設(shè)拋物線的頂點為D,動點P從點B出發(fā),沿拋物線向上運動,連接PD,過點PPQPD,交拋物線的對稱軸于點Q,以QD為對角線作矩形PQMD,當(dāng)點P運動至點(5,t)時,求線段DM掃過的圖形面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線yx+2x軸交于AB兩點,交y軸于點C

1)判斷ABC的形狀,并說明理由.

2)在拋物線對稱軸上是否存在一點P,使得以AC、P為頂點的三角形是等腰三角形?若存在,求出點P的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,C,D是⊙O上的點,且OC∥BD,AD分別與BC,OC相交于點E,F(xiàn),則下列結(jié)論:

①AD⊥BD;②∠AOC=∠AEC;③CB平分∠ABD;④AF=DF;⑤BD=2OF;⑥△CEF≌△BED,其中一定成立的是( )

A. ②④⑤⑥ B. ①③⑤⑥ C. ②③④⑥ D. ①③④⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】直角三角形斜邊長為6,那么這個三角形的重心到斜邊中點的距離為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在同一直角坐標(biāo)系中,函數(shù)和函數(shù)(m是常數(shù),且)的圖象可能是( )

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC中,∠C90°,ACBC,將△ABC繞點A順時針方向旋轉(zhuǎn)60°到△AB'C'的位置,連接CBCB1,則AC_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC在平面直角坐標(biāo)系中,三個頂點坐標(biāo)分別為A0,3)、B3、4)、C2,2)(網(wǎng)格中每個正方形的邊長是1個單位長度).

1)以點B為位似中心,在網(wǎng)格內(nèi)畫出A′BC′,使A′BC′ABC位似,且位似比為21,則點C′的坐標(biāo)是______

2A′BC′的面積是_______平方單位;

3)在x軸上找出點P,使得點PB與點A距離之和最小,請直接寫出P點的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案