【題目】如圖,將一副直角三角板拼在一起得四邊形ABCD,∠ACB=45°,∠ACD=30°,點E為CD邊上的中點,連接AE,將△ADE沿AE所在直線翻折得到△AD′E,D′E交AC于F點,若AB= 6cm,點D′到BC的距離是( )
A. B. C. D.
【答案】C
【解析】連接CD′,BD′,過點D′作D′G⊥BC于點G,進而得出△ABD′≌△CBD′,于是得到∠D′BG=45°,D′G=GB,進而利用勾股定理求出點D′到BC邊的距離.
連接CD′,BD′,過點D′作D′G⊥BC于點G,
∵AC垂直平分線ED′,
∴AE=AD′,CE=CD′,
∵AE=EC,∴AD′=CD′=4,
在△ABD′和△CBD′中,
AB=BCBD′=BD′AD′=CD′,
∴△ABD′≌△CBD′(SSS),
∴∠D′BG=45°,
∴D′G=GB,
設(shè)D′G長為xcm,則CG長為(6x)cm,
在Rt△GD′C中
x2+(6x)2=(4)2,
解得:x1=36,x2=3+6(舍去),
∴點D′到BC邊的距離為(36)cm.
故選:C.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩校的學(xué)生人數(shù)基本相同,為了解這兩所學(xué)校學(xué)生的數(shù)學(xué)學(xué)業(yè)水平,在同一次測試中,從兩校各隨機抽取了30名學(xué)生的測試成績進行調(diào)查分析,其中甲校已經(jīng)繪制好了條形統(tǒng)計圖,乙校只完成了一部分.
甲校 93 82 76 77 76 89 89 89 83 87 88 89 84 92 87
89 79 54 88 92 90 87 68 76 94 84 76 69 83 92
乙校 84 63 90 89 71 92 87 92 85 61 79 91 84 92 92
73 76 92 84 57 87 89 88 94 83 85 80 94 72 90
(1)請根據(jù)乙校的數(shù)據(jù)補全條形統(tǒng)計圖;
(2)兩組樣本數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)如下表所示,請補全表格;
平均數(shù) | 中位數(shù) | 眾數(shù) | |
甲校 | 83.4 | 87 | 89 |
乙校 | 83.2 |
(3)兩所學(xué)校的同學(xué)都想依據(jù)抽樣的數(shù)據(jù)說明自己學(xué)校學(xué)生的數(shù)學(xué)學(xué)業(yè)水平更好一些,
請為他們各寫出一條可以使用的理由;
甲校: .乙校: .
(4)綜合來看,可以推斷出 校學(xué)生的數(shù)學(xué)學(xué)業(yè)水平更好一些,理由為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,AB=2,∠DAB=60°,點E是AD邊的中點,點M是AB邊上一動點(不與點A重合),延長ME交射線CD于點N,連接MD,AN.
(1)求證:四邊形AMDN是平行四邊形;
(2)填空:①當(dāng)AM的值為 時,四邊形AMDN是矩形;②當(dāng)AM的值為 時,四邊形AMDN是菱形。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀理解:德國著名數(shù)學(xué)家高斯被認為是歷史上最重要的數(shù)學(xué)家之一,并有"數(shù)學(xué)王子"的美譽.高斯從小就善于觀察和思考.在他讀小學(xué)時候就能在課堂上快速的計算出,今天我們可以將高斯的做法歸納如下:
令 ①
②
(右邊相加100+1=2+99=3+98=…..=100+1共100組)
①+②:有2S=101x100 解得:
(1)請參照以上做法,回答,3+5+7+9+…..+97= ;
請嘗試解決下列問題:
如下圖,有一個形如六邊形的點陣,它的中心是一個點,算第一層,第二層每邊有兩個點,第三層每邊有三個點,依此類推.
(2)填寫下表:
層數(shù) | 1 | 2 | 3 | 4 |
該層對應(yīng)的點數(shù) | 1 | 6 | 12 | 18 |
所有層的總點數(shù)的和 | 1 | 7 | 19 |
①寫出第n層所對應(yīng)的點數(shù);(n≥2)
②如果某一層共96個點,求它是第幾層;
③寫出n層的六邊形點陣的總點數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,∠AOB是直角,∠AOC=40°,ON是∠AOC的平分線,OM是∠BOC的平分線.
(1)求∠MON的大小.
(2)當(dāng)銳角∠AOC的大小發(fā)生改變時,∠MON的大小是否發(fā)生改變?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點C在AB上,點M、N分別是AC、BC的中點,
(1)若AC=12cm,BC=10cm,求線段MN的長;
(2)若點C為線段AB上任意一點,滿足AC+BC=acm,其它條件不變,你能猜想MN的長度嗎?并說明理由;
(3)若點C在線段AB的延長線上,且滿足AC-BC=bcm,點M、N分別為AC、BC的中點,你能猜想MN的長度嗎?請畫出圖形,并說明理由.請用一句簡潔的話描述你發(fā)現(xiàn)的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著我市社會經(jīng)濟的發(fā)展和交通狀況的改善,我市的旅游業(yè)得到了高速發(fā)展某旅游公司對我市一企業(yè)個人旅游年消費情況進行問卷調(diào)查隨機抽取部分員工,記錄每個人年消費金額,并將調(diào)查數(shù)據(jù)適當(dāng)整理,繪制成如下兩幅尚不完整的表和圖:
組別 | 個人年消費金額元 | 頻數(shù) | 頻率 |
A |
| 18 |
|
B |
| a | b |
C |
|
|
|
D |
| 24 |
|
E |
| 12 |
|
合計 | c |
|
根據(jù)以上信息解答下列問題:
________; ________; ________;
補全頻數(shù)分布直方圖;
若這個企業(yè)有3000名員工,請你估計個人旅游年消費金額在6000元以上的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c經(jīng)過A(﹣2,0),B(4,0),C(0,3)三點.
(1)求該拋物線的解析式;
(2)在y軸上是否存在點M,使△ACM為等腰三角形?若存在,請直接寫出所有滿足要求的點M的坐標;若不存在,請說明理由;
(3)若點P(t,0)為線段AB上一動點(不與A,B重合),過P作y軸的平行線,記該直線右側(cè)與△ABC圍成的圖形面積為S,試確定S與t的函數(shù)關(guān)系式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com