如圖,梯形ABCD在平面直角坐標(biāo)系中,上底AD平行于x軸,下底BC交y軸于點(diǎn)E,點(diǎn)C(4,-2),點(diǎn)D(1,2),BC=9,sin∠ABC=
4
5

(1)求直線AB的解析式;
(2)若點(diǎn)H的坐標(biāo)為(-1,-1),動(dòng)點(diǎn)G從B出發(fā),以1個(gè)單位/秒的速度沿著BC邊向C點(diǎn)運(yùn)動(dòng)(點(diǎn)G可以與點(diǎn)B或點(diǎn)C重合),求△HGE的面積S(S≠0)隨動(dòng)點(diǎn)G的運(yùn)動(dòng)時(shí)間t′秒變化的函數(shù)關(guān)系式(寫出自變量t′的取值范圍);
(3)在(2)的條件下,當(dāng)t′=
7
2
秒時(shí),點(diǎn)G停止運(yùn)動(dòng),此時(shí)直線GH與y軸交于點(diǎn)N.另一動(dòng)點(diǎn)P開始從B出發(fā),以1個(gè)單位/秒的速度沿著梯形的各邊運(yùn)動(dòng)一周,即由B到A,然后由A到D,再由D到C,最后由C回到B(點(diǎn)P可以與梯形的各頂點(diǎn)重合).設(shè)動(dòng)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒,點(diǎn)M為直線HE上任意一點(diǎn)(點(diǎn)M不與點(diǎn)H重合),在點(diǎn)P的整個(gè)運(yùn)動(dòng)過(guò)程中,求出所有能使∠PHM與∠HNE相等的t的值.
(1)如圖1,過(guò)A作AF⊥BC.
∵C(4,-2),∴CE=4.
而BC=9,∴BE=5.
∴B(-5,-2).
∵D(1,2),∴AF=4.
∵sin∠ABC=
4
5
,∴BF=3.
∴A(-2,2).
設(shè)直線AB的解析式為y=kx+b,
-5k+b=-2
-2k+b=2
,∴
k=
4
3
b=
14
3
,
∴直線AB的解析式為y=
4
3
x+
14
3


(2)如圖1,由題意:
情況一:G在線段BE上且不與點(diǎn)E重合.
∴GE=5-t′,
S=(5-t′)×
1
2
=
5
2
-
1
2
t′
;
情況二:G在線段CE上且不與點(diǎn)E重合.
∴GE=t′-5
S=(t′-5)×
1
2
=
1
2
t′-
5
2
;
情況一中的自變量的取值范圍:0≤t′<5,
情況二中的自變量的取值范圍:5<t′≤9.

(3)如圖2,
當(dāng)t′=
7
2
秒時(shí),GE=5-
7
2
=
3
2

∴G(-
3
2
,-2),直線GH解析式為y=2x+1.
∴N(0,1).
當(dāng)點(diǎn)M在射線HE上時(shí),有兩種情況:
情況一:當(dāng)點(diǎn)P運(yùn)動(dòng)至P1時(shí),∠P1HM=∠HNE.
過(guò)點(diǎn)P1作平行于y軸的直線,交直線HE于點(diǎn)Q1,交BC于點(diǎn)R.
由BP1=t,sin∠ABC=
4
5
,可得BR=
3
5
t1
,P1R=
4
5
t1
,
∴RE=Q1R=5-
3
5
t1
,
∴P1Q1=5-
7
5
t1

∴Q1H=
2
(4-
3
5
t1)

由△P1Q1H△HEN得
P1Q1
Q1H
=
HE
EN
,
∴t1=
7
3

∴當(dāng)t1=
7
3
時(shí),∠P1HM=∠HNE;
情況二:當(dāng)點(diǎn)P運(yùn)動(dòng)至點(diǎn)P2時(shí),
設(shè)直線P2H與x軸交于點(diǎn)T,直線HE與x交于點(diǎn)Q2
此時(shí),△Q2TH△EHN
Q2T
Q2H
=
EH
EN
解得Q2T=
2
3
∴T(-
4
3
,0)

∴直線HT的解析式為y=-3x-4,此時(shí)直線HT恰好經(jīng)過(guò)點(diǎn)A(-2,2).
∴點(diǎn)P2與點(diǎn)A重合,即BP2=5,
∴t2=5.
∴當(dāng)t2=5秒時(shí),∠P2HM=∠HNE;
若點(diǎn)M在射線HE上時(shí)(點(diǎn)M記為點(diǎn)M1),有兩種情況:
情況三:當(dāng)點(diǎn)P運(yùn)動(dòng)至點(diǎn)P3時(shí),∠P3HM1=∠HNE.
過(guò)點(diǎn)P3作平行于y軸的直線P3Q3,交直線HE于點(diǎn)Q3,可用求點(diǎn)P1同樣的方法.
∴t3=15.
∴當(dāng)t3=15秒時(shí),∠P3HM1=∠HNE;
情況四:當(dāng)點(diǎn)P運(yùn)動(dòng)至P4時(shí),∠P4HM1=∠HNE.
可得△P4HE≌△THQ2,∴P4E=TQ2=
2
3
.∴t4=17
2
3

∴當(dāng)t4=17
2
3
秒時(shí),∠P4HM2=∠HNE.
綜上所述:當(dāng)t=
7
3
秒或t=5秒或t=15秒或t=17
2
3
秒時(shí),∠PHM=∠HNE.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,直線l對(duì)應(yīng)的函數(shù)解析式是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

根據(jù)函數(shù)y=kx+b的圖象,求k、b的值,并求y=kx+b與坐標(biāo)軸所圍成的三角形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖表示甲、乙兩名賽車選手在一次自行車越野賽中,路程y(km)隨時(shí)間x(min)變化的圖象(全程),根據(jù)圖象回答下列問題:
(1)甲、乙兩名賽車選手中,______先到達(dá)終點(diǎn),寫出乙運(yùn)動(dòng)員的路程y與時(shí)間x的函數(shù)關(guān)系式______,這次比賽的全程是______km;
(2)寫出甲的速度慢于乙的速度時(shí),時(shí)間x的取值范圍:______;
(3)比賽開始______min時(shí),兩人第二次相遇.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖所示,l1和l2分別表示一種白熾燈和一種節(jié)能燈的費(fèi)用y(元)與照明時(shí)間x(小時(shí))的函數(shù)關(guān)系圖象,假設(shè)兩種燈的使用壽命都是2000小時(shí),照明效果一樣.(費(fèi)用=燈的售價(jià)+電費(fèi))
(1)根據(jù)圖象分別求出l1,l2的函數(shù)關(guān)系式;
(2)當(dāng)照明時(shí)間為多少時(shí),兩種燈的費(fèi)用相等?
(3)小亮房間計(jì)劃照明2500小時(shí),他買了一個(gè)白熾燈和一個(gè)節(jié)能燈,請(qǐng)你幫他設(shè)計(jì)最省錢的用燈方法.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,在平面直角坐標(biāo)系中,OABC是正方形,點(diǎn)A的坐標(biāo)是(4,0),點(diǎn)P為邊AB上一點(diǎn),沿CP折疊正方形,折疊后點(diǎn)B落在平面內(nèi)點(diǎn)B′處,已知CB′的解析式為y=-
3
x+b,則B′點(diǎn)的坐標(biāo)為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

一次函數(shù)y=-
3
2
x+3
的圖象如圖所示,當(dāng)-3<y<3時(shí),x的取值范圍是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

健身運(yùn)動(dòng)已成為時(shí)尚,某公司計(jì)劃組裝A、B兩種型號(hào)的健身器材共40套,捐給社區(qū)健身中心.組裝一套A型健身器材需甲種部件7個(gè)和乙種部件4個(gè),組裝一套B型健身器材需甲種部件3個(gè)和乙種部件6個(gè).公司現(xiàn)有甲種部件240個(gè),乙種部件196個(gè).
(1)公司在組裝A、B兩種型號(hào)的健身器材時(shí),共有多少種組裝方案?
(2)組裝一套A型健身器材需費(fèi)用20元,組裝一套B型健身器材需費(fèi)用18元,求總組裝費(fèi)用最少的組裝方案,最少總組裝費(fèi)用是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知A、B兩地的路程為240千米.某經(jīng)銷商每天都要用汽車或火車將x噸保鮮品一次性由A地運(yùn)往B地.受各種因素限制,下一周只能采用汽車和火車中的一種進(jìn)行運(yùn)輸,且須提前預(yù)訂.
現(xiàn)有貨運(yùn)收費(fèi)項(xiàng)目及收費(fèi)標(biāo)準(zhǔn)表、行駛路程s(千米)與行駛時(shí)間t(時(shí))的函數(shù)圖象(如圖1)、上周貨運(yùn)量折線統(tǒng)計(jì)圖(如圖2)等信息如下:
貨運(yùn)收費(fèi)項(xiàng)目及收費(fèi)標(biāo)準(zhǔn)表
(1)汽車的速度為______千米/時(shí),火車的速度為______千米/時(shí):
(2)設(shè)每天用汽車和火車運(yùn)輸?shù)目傎M(fèi)用分別為y(元)和y(元),分別求y、y與x的函數(shù)關(guān)系式(不必寫出x的取值范圍),當(dāng)x為何值時(shí),y>y(總費(fèi)用=運(yùn)輸費(fèi)+冷藏費(fèi)+固定費(fèi)用)
(3)請(qǐng)你從平均數(shù)、折線圖走勢(shì)兩個(gè)角度分析,建議該經(jīng)銷商應(yīng)提前為下周預(yù)定哪種運(yùn)輸工具,才能使每天的運(yùn)輸總費(fèi)用較省?

查看答案和解析>>

同步練習(xí)冊(cè)答案