為保護(hù)學(xué)生視力,課桌椅的高度都是按一定的關(guān)系配套設(shè)計(jì)的,研究表明:假設(shè)課桌的高度為 cm,椅子的高度為 cm,則應(yīng)是的一次函數(shù),下表列出兩套符合條件的課桌椅的高度:

 
第一套
第二套
椅子高度(cm)
40
37
課桌高度(cm)
75
70
(1)請(qǐng)確定的函數(shù)關(guān)系式.
(2)現(xiàn)有一把高39 cm的椅子和一張高78.2 cm的課桌,它們是否配套?為什么?

(1)  (2)不配套,理由見(jiàn)解析

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知:關(guān)于x的一元二次方程mx2﹣(4m+1)x+3m+3="0" (m>1).
(1)求證:方程有兩個(gè)不相等的實(shí)數(shù)根;
(2)設(shè)方程的兩個(gè)實(shí)數(shù)根分別為x1,x2(其中x1>x2),若y是關(guān)于m的函數(shù),且y=x1﹣3x2,求這個(gè)函數(shù)的解析式;
(3)將(2)中所得的函數(shù)的圖象在直線m=2的左側(cè)部分沿直線m=2翻折,圖象的其余部分保持不變,得到一個(gè)新的圖象.請(qǐng)你結(jié)合這個(gè)新的圖象回答:當(dāng)關(guān)于m的函數(shù)y=2m+b的圖象與此圖象有兩個(gè)公共點(diǎn)時(shí),b的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖所示,一次函數(shù)y=k1x+b與反比例函數(shù)y=(x<0)的圖象相交于A,B兩點(diǎn),且與坐標(biāo)軸的交點(diǎn)為(–6,0),(0,6),點(diǎn)B的橫坐標(biāo)為–4.

(1)試確定反比例函數(shù)的解析式;
(2)求△AOB的面積;
(3)直接寫出不等式k1x+b>的解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知反比例函數(shù)y=(k為常數(shù),k≠1)
(1)其圖象與正比例函數(shù)y=x的圖象的一個(gè)交點(diǎn)為P,若點(diǎn)P的縱坐標(biāo)是2,求k的值;
(2)若在其圖象的每一支上,y隨x的增大而減小,求k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

在同一直角坐標(biāo)系中畫出下列函數(shù)的圖象:.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖:一次函數(shù)的圖象與反比例函數(shù)的圖象交于A(-2,6)和點(diǎn)B(4,n)

(1)求反比例函數(shù)的解析式和B點(diǎn)坐標(biāo)
(2)根據(jù)圖象回答,在什么范圍時(shí),一次函數(shù)的值大于反比例函數(shù)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

某文具店準(zhǔn)備購(gòu)進(jìn)甲,乙兩種鋼筆,若購(gòu)進(jìn)甲種鋼筆100支,乙種鋼筆50支,需要1000元,若購(gòu)進(jìn)甲種鋼筆50支,乙種鋼筆30支,需要550元.
(1)求購(gòu)進(jìn)甲,乙兩種鋼筆每支各需多少元?
(2)若該文具店準(zhǔn)備拿出1000元全部用來(lái)購(gòu)進(jìn)這兩種鋼筆,考慮顧客需求,要求購(gòu)進(jìn)甲中鋼筆的數(shù)量不少于乙種鋼筆數(shù)量的6倍,且不超過(guò)乙種鋼筆數(shù)量的8倍,那么該文具店共有幾種進(jìn)貨方案?
(3)若該文具店銷售每支甲種鋼筆可獲利潤(rùn)2元,銷售每支乙種鋼筆可獲利潤(rùn)3元,在第(2)問(wèn)的各種進(jìn)貨方案中,哪一種方案獲利最大?最大利潤(rùn)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,四邊形OABC是矩形,點(diǎn)A、C的坐標(biāo)分別為(3,0)、(0,1),點(diǎn)D是線段BC上的動(dòng)點(diǎn)(與端點(diǎn)B、C不重合),過(guò)點(diǎn)D作直線交折線OAB于點(diǎn)E.

(1)記的面積為S,求S與b的函數(shù)關(guān)系式;
(2)當(dāng)點(diǎn)E在線段OA上時(shí),若矩形OABC關(guān)于直線DE的對(duì)稱圖形為四邊形,DE=,試探究四邊形與矩形OABC的重疊部分的面積是否發(fā)生變化,若不變,求出該重疊部分的面積;若改變,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知直線與x軸、y軸分別交于點(diǎn)A、B,線段AB為直角邊在第一象限內(nèi)作等腰Rt△ABC,∠BAC=90°.

(1)求△AOB的面積;
(2)求點(diǎn)C坐標(biāo);
(3)點(diǎn)P是x軸上的一個(gè)動(dòng)點(diǎn),設(shè)P(x,0)
①請(qǐng)用x的代數(shù)式表示PB2、PC2
②是否存在這樣的點(diǎn)P,使得|PC-PB|的值最大?如果不存在,請(qǐng)說(shuō)明理由;
如果存在,請(qǐng)求出點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案