【題目】如圖,先將正方形紙片對(duì)折,折痕為EF,再把點(diǎn)C折疊到EF上,折痕為DN,點(diǎn)CEF上的對(duì)應(yīng)點(diǎn)為M,則下列結(jié)論中(1AM=AB;2)∠MCE=15°;(3AMD是等邊三角形;(4CN=NE,正確的個(gè)數(shù)有(

A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)

【答案】C

【解析】

根據(jù)翻折變換的性質(zhì)、正方形的性質(zhì),結(jié)合題意即可判斷,得出答案.

1)根據(jù)翻折變換的性質(zhì)可知DM=DC,由將正方形紙片對(duì)折,折痕為EF,可知AM=DM,根據(jù)正方形的性質(zhì)可知DC=AB,所以AM=AB,(1)正確;∵四邊形ABCD是正方形,∴AD=CD,∠ADC=90°, ∵將正方形紙片ABCD對(duì)折,折痕為EF,∴AM=DM,∵把點(diǎn)C折疊在EF上,折痕為DN,∴DM=DC,∴AD=DM=AM,∴△ADM是等邊三角形,∴∠ADM=60°,∴∠MDC=30°,∴∠DMC=75°,∴∠CME=180°-30°-75°=75°,則∠MCE=90°-75°=15°.所以(2)正確;由(1)可知AM=DM,DM=DC,根據(jù)正方形的性質(zhì)可知AD=DM,所以AMD是等邊三角形,(3)正確;根據(jù)已知條件不能得出CN=NE ,所以(4)錯(cuò)誤;故答案選擇C項(xiàng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線與反比例函數(shù)的圖象交于點(diǎn),與y軸交于點(diǎn)B.

1)求的值;

2)已知過(guò)(26)點(diǎn),求當(dāng)時(shí)x的取值范圍.

3)設(shè)點(diǎn)P的坐標(biāo)為,過(guò)點(diǎn)P作平行于x軸的直線與直線和反比例函數(shù)的圖象分別交于點(diǎn)C,D,當(dāng)C,D間距離小于或等于4時(shí),直接寫(xiě)出n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在7×7網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)都為1

(1)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系后,若點(diǎn)A(1,3)、C(2,1),則點(diǎn)B的坐標(biāo)為______;

(2)ABC的面積為______;

(3)判斷△ABC的形狀,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算下列各題:

11-4+3-0.5

2()×6

340×-5--3÷

4-14+-2×-22

532--×+-8÷

6(-)3+

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】發(fā)現(xiàn)

如圖1,在有一個(gè)“凹角∠A1A2A3n邊形A1A2A3A4……An中(n為大于3的整數(shù)),∠A1A2A3=∠A1+A3+A4+A5+A6+……+An﹣(n4)×180°.

驗(yàn)證

1)如圖2,在有一個(gè)“凹角∠ABC”的四邊形ABCD中,證明:∠ABC=∠A+C+D

2)證明3,在有一個(gè)“凹角∠ABC”的六邊形ABCDEF中,證明;∠ABC=∠A+C+D+E+F360°.

延伸

3)如圖4,在有兩個(gè)連續(xù)“凹角A1A2A3和∠A2A3A4”的四邊形A1A2A3A4……An中(n為大于4的整數(shù)),∠A1A2A3+A2A3A4=∠A1+A4+A5+A6……+An﹣(n  )×180°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,已知 ADAB.在邊AD上取點(diǎn)E,連結(jié)CE.過(guò)點(diǎn)EEFCE,與邊AB的延長(zhǎng)線交于點(diǎn)F

1)證明:AEF∽△DCE

2)若AB=4,AE=6,AD=14,求線段AF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果一個(gè)三角形能被一條線段分割成兩個(gè)等腰三角形,那么稱這條線段為這個(gè)三角形的特異線,稱這個(gè)三角形為特異三角形.

(1)如圖1,ABC是等腰銳角三角形,AB=AC(),若ABC的角平分線BDAC于點(diǎn)D,且BDABC的一條特異線,則BDC=______度;

(2)如圖2,ABC中,B=2C,線段AC的垂直平分線交AC于點(diǎn)D,交BC于點(diǎn)E.求證:AEABC的一條特異線;

(3)如圖3,已知ABC是特異三角形,且A=30°,B為鈍角,求出所有可能的B的度數(shù)(如有需要,可在答題卡相應(yīng)位置另外畫(huà)圖).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩家體育用品商店出售同樣的乒乓球拍和乒乓球,乒乓球拍每副定價(jià)40元,乒乓球每盒定價(jià)5元.現(xiàn)兩家商店搞促銷活動(dòng),甲店的優(yōu)惠辦法是:每買(mǎi)一副乒乓球拍贈(zèng)兩盒乒乓球;乙店的優(yōu)惠辦法是:全部商品按定價(jià)的8.5折出售.某班需購(gòu)買(mǎi)乒乓球拍4副,乒乓球若干盒(不少于8盒).

1)當(dāng)購(gòu)買(mǎi)乒乓球的盒數(shù)為x盒時(shí),在甲店購(gòu)買(mǎi)需付款 元?在乙店購(gòu)買(mǎi)需付款 元?(用含x的代數(shù)式表示)

2)當(dāng)購(gòu)買(mǎi)乒乓球盒數(shù)為20盒時(shí),去哪一家商店購(gòu)買(mǎi)較合算?請(qǐng)計(jì)算說(shuō)明.

3 當(dāng)購(gòu)買(mǎi)乒乓球盒數(shù)為20盒時(shí),你能給出一種更為省錢(qián)的購(gòu)買(mǎi)方案嗎?試寫(xiě)出你的購(gòu)買(mǎi)方案,并求出此時(shí)需付多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖的統(tǒng)計(jì)圖反映了我國(guó)2013年到2017年國(guó)內(nèi)生產(chǎn)總值情況.(以上數(shù)據(jù)摘自國(guó)家統(tǒng)計(jì)局《中華人民共和國(guó)2017年國(guó)民經(jīng)濟(jì)和社會(huì)發(fā)展統(tǒng)計(jì)公報(bào)》)根據(jù)統(tǒng)計(jì)圖提供的信息,下列推斷不合理的是( 。

A. 2016年相比,2017年我國(guó)國(guó)內(nèi)生產(chǎn)總值有所增長(zhǎng)

B. 2013﹣2016年,我國(guó)國(guó)內(nèi)生產(chǎn)總值的增長(zhǎng)率逐年降低

C. 2013﹣2017年,我國(guó)國(guó)內(nèi)生產(chǎn)總值的平均增長(zhǎng)率約為6.7%

D. 2016﹣2017年比2014﹣2015年我國(guó)國(guó)內(nèi)生產(chǎn)總值增長(zhǎng)的多

查看答案和解析>>

同步練習(xí)冊(cè)答案