【題目】如圖,AC是以AB為直徑的O的弦,點(diǎn)DO上的一點(diǎn),過點(diǎn)DO的切線交直線AC于點(diǎn)E,AD平分BAE,若AB10,DE3,則AE的長(zhǎng)為____________

【答案】1或9

【解析】(1)點(diǎn)E在AC的延長(zhǎng)線上時(shí),過點(diǎn)O作OFAC交AC于點(diǎn)F,如圖所示

∵OD=OA,

∴∠OAD=∠ODA,

AD平分∠BAE,

∴∠OAD=∠ODA=∠DAC,

∴OD//AE,

∵DE是圓的切線,

∴DE⊥OD,

∴∠ODE=∠E=90o,

∴四邊形ODEF是矩形,

∴OF=DE,EF=OD=5,

又∵OF⊥AC,

∴AF=

∴AE=AF+EF=5+4=9.

(2)當(dāng)點(diǎn)E在CA的線上時(shí),過點(diǎn)O作OFAC交AC于點(diǎn)F,如圖所示

同(1)可得:EF=OD=5,OF=DE=3,

在直角三角形AOF中,AF=,

∴AE=EF-AF=5-4=1.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線m∥n,點(diǎn)C是直線m上一點(diǎn),點(diǎn)D是直線n上一點(diǎn),CD與直線m、n不垂直,點(diǎn)P為線段CD的中點(diǎn).

(1)操作發(fā)現(xiàn):直線l⊥m,分別交m、n于點(diǎn)A、B,當(dāng)點(diǎn)B與點(diǎn)D重合時(shí)(如圖1),連結(jié)PA,請(qǐng)直接寫出線段PAPB的數(shù)量關(guān)系:   

(2)猜想證明:在圖1的情況下,把直線l向右平移到如圖2的位置,試問(1)中的PAPB

的關(guān)系式是否仍然成立?若成立,請(qǐng)給予證明;若不成立,請(qǐng)說(shuō)明理由.

(3)延伸探究:在圖2的情況下,把直線l繞點(diǎn)A旋轉(zhuǎn),使得∠APB=90°(如圖3),若兩平行線m、n之間的距離為2k,求證:PAPB=kAB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,把一個(gè)轉(zhuǎn)盤分成四等份,依次標(biāo)上數(shù)字1、2、3、4,若連續(xù)自由轉(zhuǎn)動(dòng)轉(zhuǎn)盤二次,指針指向的數(shù)字分別記作作為點(diǎn)的橫、縱坐標(biāo).

1】求點(diǎn)Aa,b)的個(gè)數(shù);

2】求點(diǎn)Aa,b)在函數(shù)的圖象上的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,E為對(duì)角線AC上一點(diǎn),CE=CD,連接EB、ED,延長(zhǎng)BEAD于點(diǎn)F.求證:DF2=EFBF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,將△DEF與△ABC重合在一起,△ABC不動(dòng),△DEF運(yùn)動(dòng),并滿足:點(diǎn)E在邊BC上沿BC的方向運(yùn)動(dòng),且DE始終經(jīng)過點(diǎn)A,EFAC交于M點(diǎn).

(1)求證:△ABE∽△ECM;

(2)探究:在△DEF運(yùn)動(dòng)過程中,重疊部分能否構(gòu)成等腰三角形?若能,求出BE的長(zhǎng);若不能,請(qǐng)說(shuō)明理由;

(3)當(dāng)線段AM最短時(shí),求重疊部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市旅游景區(qū)有A,BC,DE等著名景點(diǎn),該市旅游部門統(tǒng)計(jì)繪制出2018年春節(jié)期間旅游情況統(tǒng)計(jì)圖(如圖),根據(jù)圖中信息解答下列問題:

(1)2018年春節(jié)期間,該市AB,C,D,E這五個(gè)景點(diǎn)共接待游客   萬(wàn)人,扇形統(tǒng)計(jì)圖中E景點(diǎn)所對(duì)應(yīng)的圓心角的度數(shù)是   ,并補(bǔ)全條形統(tǒng)計(jì)圖.

(2)甲,乙兩個(gè)旅行團(tuán)在A,BD三個(gè)景點(diǎn)中隨機(jī)選擇一個(gè),這兩個(gè)旅行團(tuán)選中同一景點(diǎn)的概率是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某超市計(jì)劃購(gòu)進(jìn)甲、乙兩種商品,兩種商品的進(jìn)價(jià)、售價(jià)如下表:

商品

進(jìn)價(jià)(元/件)

售價(jià)(元/件)

200

100

若用360元購(gòu)進(jìn)甲種商品的件數(shù)與用180元購(gòu)進(jìn)乙種商品的件數(shù)相同.

1)求甲、乙兩種商品的進(jìn)價(jià)是多少元?

2)若超市銷售甲、乙兩種商品共50件,其中銷售甲種商品為件(),設(shè)銷售完50件甲、乙兩種商品的總利潤(rùn)為元,求之間的函數(shù)關(guān)系式,并求出的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中直線y=x﹣2與y軸相交于點(diǎn)A,與反比例函數(shù)在第一象限內(nèi)的圖象相交于點(diǎn)B(m,2).

(1)求反比例函數(shù)的關(guān)系式;

(2)將直線y=x﹣2向上平移后與反比例函數(shù)圖象在第一象限內(nèi)交于點(diǎn)C,且ABC的面積為18,求平移后的直線的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,OA=OC,則由拋物線的特征寫出如下含有a、b、c三個(gè)字母的等式或不等式:①=﹣1;ac+b+1=0;abc>0;a﹣b+c>0.其中正確的個(gè)數(shù)是(  )

A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案