下列函數(shù)中,既是一次函數(shù),又是正比例函數(shù)的是( 。
A、y=15x2
B、y=x(x-5)-x2
C、y=
1
2x
D、y=5x-1
考點(diǎn):一次函數(shù)的定義,正比例函數(shù)的定義
專題:
分析:找到符合y=kx(k≠0)的形式的函數(shù)即可.
解答:解:∵正比例函數(shù)屬于一次函數(shù),
∴既是一次函數(shù)又是正比例函數(shù)的函數(shù)應(yīng)為正比例函數(shù),
各個選項中,是正比例函數(shù)的只有選項B,
故選:B.
點(diǎn)評:考查一次函數(shù)及正比例函數(shù)的定義;注意一次函數(shù)包括正比例函數(shù);掌握正比例函數(shù)的一般形式是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

樣本6,7,8,9,10的方差是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

把y=
1
2
x2-2x+1寫成y=a(x-h)2+k的形式是( 。
A、y=
1
2
(x-2)2-1
B、y=
1
2
(x-1)2+2
C、y=
1
2
(x-1)2+
1
2
D、y=
1
2
(x-2)2-3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在一張直角三角形紙片的兩直角邊上各取一點(diǎn),分別沿斜邊中點(diǎn)與這兩點(diǎn)的連線剪去兩個三角形,剩下的部分是如圖所示的直角梯形,其中三邊長分別為2、4、3,則原直角三角形紙片的斜邊長是( 。
A、10或8
B、4
5
2
17
C、10或4
5
D、10或2
17

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如果代數(shù)式
x-3
x-2
有意義,那么x的取值范圍是( 。
A、x>3B、x≠2
C、x≥3且x≠2D、x≥3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

六•一兒童節(jié),小文到公園游玩.看到公園的一段人行彎道MN(不計寬度),如圖,它與兩面互相垂直的圍墻OP、OQ之間有一塊空地MPOQN(MP⊥OP,NQ⊥OQ),他發(fā)現(xiàn)彎道MN上任一點(diǎn)到兩邊圍墻的垂線段與圍墻所圍成的矩形的面積都相等,比如:A、B、C是彎道MN上的三點(diǎn),矩形ADOG、矩形BEOH、矩形CFOI的面積相等.愛好數(shù)學(xué)的他建立了平面直角坐標(biāo)系(如圖),圖中三塊陰影部分的面積分別記為S1、S2、S3,并測得S2=6(單位:平方米).OG=GH=HI.
(1)求S1和S3的值;
(2)設(shè)T(x,y)是彎道MN上的任一點(diǎn),寫出y關(guān)于x的函數(shù)關(guān)系式;
(3)公園準(zhǔn)備對區(qū)域MPOQN內(nèi)部進(jìn)行綠化改造,在橫坐標(biāo)、縱坐標(biāo)都是偶數(shù)的點(diǎn)處種植花木(區(qū)域邊界上的點(diǎn)除外),已知MP=2米,NQ=3米.問一共能種植多少棵花木?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

一件工藝品進(jìn)價為100元,標(biāo)價135元出售時,每天可售出100件.根據(jù)銷售統(tǒng)計,一件工藝品每降價1元,則每天可多售出4件.
(1)試求每天所獲得的利潤用y(元)與降價x(元)之間的函數(shù)解析式;
(2)要使每天所獲得的利潤最大,求每件需降價的錢數(shù)和每天獲得的最大利潤.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,點(diǎn)O、A、B坐標(biāo)分別為(0,0),(4,2),(3,0).將△OAB繞O點(diǎn)逆時針方向旋轉(zhuǎn)90°到△A1B1O.
(1)畫出△A1B1O;
(2)寫出A1點(diǎn)的坐標(biāo);
(3)求出BB1的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

化簡計算:-
7
9
+|3
1
6
|-
2
9
+(-6
1
6

查看答案和解析>>

同步練習(xí)冊答案