【題目】如圖,在△ABC中,D、E分別是AB、AC的中點(diǎn),過點(diǎn)E作EF∥AB,交BC于點(diǎn)F.
(1)求證:四邊形DBFE是平行四邊形;
(2)當(dāng)△ABC滿足什么條件時,四邊形DBFE是菱形?為什么?
【答案】(1)證明見解析;(3)當(dāng)AB=BC時,四邊形DBFE是菱形.
【解析】
試題分析:(1)根據(jù)三角形的中位線平行于第三邊并且等于第三邊的一半可得DE∥BC,然后根據(jù)兩組對邊分別平行的四邊形是平行四邊形證明;
(2)根據(jù)鄰邊相等的平行四邊形是菱形證明.
試題解析:(1)∵D、E分別是AB、AC的中點(diǎn),
∴DE是△ABC的中位線,
∴DE∥BC,
又∵EF∥AB,
∴四邊形DBFE是平行四邊形;
(2)當(dāng)AB=BC時,四邊形DBFE是菱形.
理由如下:∵D是AB的中點(diǎn),
∴BD=AB,
∵DE是△ABC的中位線,
∴DE=BC,
∵AB=BC,
∴BD=DE,
又∵四邊形DBFE是平行四邊形,
∴四邊形DBFE是菱形.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將下列多項(xiàng)式因式分解,結(jié)果中不含有因式(x-2)的是( )
A. x2-4 B. x3-4x2-12x C. x2-2x D. (x-3)2+2(x-3)+1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A是雙曲線在第一象限上的一動點(diǎn),連接AO并延長交另一分支于點(diǎn)B,以AB為斜邊作等腰Rt△ABC,點(diǎn)C在第二象限,隨著點(diǎn)A的運(yùn)動,點(diǎn)C的位置也不斷的變化,但始終在一函數(shù)圖象上運(yùn)動,則這個函數(shù)的解析式為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程x2-3x+m=0的一個根是2,則它的另一個根是__________,m的值是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2016年南京全市完成全社會固定資產(chǎn)投資約55000000萬元,將55000000用科學(xué)記數(shù)法表示為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個不透明的口袋中裝有4個分別標(biāo)有數(shù)字﹣1,﹣2,3,4的小球,它們的形狀、大小完全相同.小紅先從口袋中隨機(jī)摸出一個小球記下數(shù)字為x;小穎在剩下的3個小球中隨機(jī)摸出一個小球記下數(shù)字為y.
(1)小紅摸出標(biāo)有數(shù)字3的小球的概率是 ;
(2)請用列表法或畫樹狀圖的方法表示出由x,y確定的點(diǎn)P(x,y)所有可能的結(jié)果,并求出點(diǎn)P(x,y)落在第三象限的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,點(diǎn)C在⊙O上,過點(diǎn)C的直線與AB的延長線交于點(diǎn)P,AC=PC,∠COB=2∠PCB.
(1)求證:PC是⊙O的切線;
(2)求證:BC=AB;
(3)點(diǎn)M是弧AB的中點(diǎn),CM交AB于點(diǎn)N,若AB=4,求MN·MC的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題:如圖甲,在等邊三角形內(nèi)有一點(diǎn),且,,,求度數(shù)的大小和等邊三角形的邊長
探究:解題思路是:將繞點(diǎn)逆時針旋轉(zhuǎn),如圖乙,連接
(1)是_______三角形,是______三角形,
(2)利用可以求出的邊長為_______
拓展應(yīng)用:如圖丙,在正方形內(nèi)有一點(diǎn),且,,
(3)求度數(shù)的大小
(4)求正方形的邊長
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com