【題目】某賓館有單人間、雙人間和三人間三種客房供游客租住,某旅行團有18人準(zhǔn)備同時租用這三種客房共9間,且每個房間都住滿,則租房方案共有______種.

【答案】4

【解析】

首先設(shè)賓館有客房:單人間x間、二人間y間、三人間z間,根據(jù)題意可得方程組:,解此方程組可得y+2z=9,又由x,y,z是非負整數(shù),即可求得答案.

解:設(shè)賓館有客房:單人間x間、二人間y間、三人間z間,根據(jù)題意可得,

解得:y+2z=9,
y=9-2z,
x,yz都是小于9的正整數(shù),
當(dāng)z=1時,y=7,x=1
當(dāng)z=2時,y=5,x=2
當(dāng)z=3時,y=3,x=3
當(dāng)z=4時,y=1x=4
當(dāng)z=5時,y=-1(不合題意,舍去)
∴租房方案有4種.
故答案是:4

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線x軸交于A(-1,0)和B(3,0)兩點,與y軸交于點C,對稱軸與x軸交于點E,點D為頂點,連接BD、CDBC

(1)求證BCD是直角三角形;

(2)點P為線段BD上一點,若∠PCO+∠CDB=180°,求點P的坐標(biāo);

(3)點M為拋物線上一點,作MNCD,交直線CD于點N,若∠CMN=∠BDE,請直接寫出所有符合條件的點M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,∠C=120°,AD=4AB=2,點H、G分別是邊CD、BC上的動點.連接AH、HG,點EAH的中點,點FGH的中點,連接EFEF的最大值與最小值的差為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校隨機抽取部分學(xué)生,就“學(xué)習(xí)習(xí)慣”進行調(diào)查,將“對自己做錯題進行整理、分析、改正”(選項為:很少、有時、常常、總是)的調(diào)查數(shù)據(jù)進行了整理,繪制成部分統(tǒng)計圖如下:

請根據(jù)圖中信息,解答下列問題:

(1)該調(diào)查的樣本容量為________, =________%, =________%,“常!睂(yīng)扇形的圓心角的度數(shù)為__________;

(2)請你補全條形統(tǒng)計圖;

(3)若該校有3200名學(xué)生,請你估計其中“總是”對錯題進行整理、分析、改正的

學(xué)生有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,MN是⊙O的直徑,MN=2a,∠AMN=40°,點B為弧AN的中點,點P是直徑MN上的一個動點,則 PA+PB的最小值為_____.(用含a的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在矩形中,BC=3,動點出發(fā),以每秒1個單位的速度,沿射線方向移動,作關(guān)于直線的對稱,設(shè)點的運動時間為

1)若

①如圖2,當(dāng)點B’落在AC上時,顯然PCB’是直角三角形,求此時t的值

②是否存在異于圖2的時刻,使得PCB’是直角三角形?若存在,請直接寫出所有符合題意的t的值?若不存在,請說明理由

2)當(dāng)P點不與C點重合時,若直線PB’與直線CD相交于點M,且當(dāng)t3時存在某一時刻有結(jié)論∠PAM=45°成立,試探究:對于t3的任意時刻,結(jié)論∠PAM=45°是否總是成立?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(操作發(fā)現(xiàn))三角形三個頂點與重心的連線段,將該三角形面積三等分.

1)如圖①:中,中線、、相交于點.求證:.

(提出問題)如圖②,探究在四邊形中,邊上任意一點,的面積之間的關(guān)系.

2)為了解決這個問題,我們可以先從一些簡單的、特殊的情形入手:

如圖③,當(dāng)時,探求之間的關(guān)系,寫出求解過程.

(問題解決)

3)推廣,當(dāng)表示正整數(shù))時,直接寫出之間的關(guān)系:____________.

4)一般地,當(dāng)時,之間的關(guān)系式為:____________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個不透明的袋中裝有紅、黃、白三種顏色的球共100個,它們除顏色外都相同,其中黃球的個數(shù)是白球個數(shù)的2倍少5個,已知從袋中摸出一個球是紅球的概率是.

(1)求袋中紅球的個數(shù);

(2)求從袋中摸出一個球是白球的概率;

(3)取走10個球(其中沒有紅球)后,求從剩余的球中摸出一個球是紅球的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,數(shù)軸上三個點A、O、P,點O是原點,固定不動,點A和B可以移動,點A表示的數(shù)為,點B表示的數(shù)為.

(1)若A、B移動到如圖所示位置,計算的值.

(2)在(1)的情況下,B點不動,點A向左移動3個單位長,寫出A點對應(yīng)的數(shù),并計算.

(3)在(1)的情況下,點A不動,點B向右移動15.3個單位長,此時大多少?請列式計算.

查看答案和解析>>

同步練習(xí)冊答案