【題目】如圖1,為美化校園環(huán)境,某校計劃在一塊長為20m,寬為15m的長方形空地上修建一條寬為a(m)的甬道,余下的部分鋪設草坪建成綠地.
(1)甬道的面積為 m2,綠地的面積為 m2(用含a的代數(shù)式表示);
(2)已知某公園公司修建甬道,綠地的造價W1(元),W2(元)與修建面積S之間的函數(shù)關系如圖2所示.①園林公司修建一平方米的甬道,綠地的造價分別為 元, 元.②直接寫出修建甬道的造價W1(元),修建綠地的造價W2(元)與a(m)的關系式;③如果學校決定由該公司承建此項目,并要求修建的甬道寬度不少于2m且不超過5m,那么甬道寬為多少時,修建的甬道和綠地的總造價最低,最低總造價為多少元?
【答案】(1)15a、(300﹣15a);(2)①①80、70;;②W1=80×15a=1200a,W2=70(300﹣15a)=﹣1050a+21000;③甬道寬為2米時,修建的甬道和綠地的總造價最低,最低總造價為21300元;
【解析】
(1)根據(jù)圖形即可求解;
(2)①園林公司修建一平方米的甬道,綠地的造價分別為=80元,=70元②根據(jù)題意即可列出關系式;③W=W1+W2=1200a+(﹣1050a+21000)=150a+21000,再根據(jù)2≤a≤5,即可進行求解.
解:(1)甬道的面積為15am2,綠地的面積為(300﹣15a)m2;
故答案為:15a、(300﹣15a);
(2)①園林公司修建一平方米的甬道,綠地的造價分別為=80元,=70元.
②W1=80×15a=1200a,
W2=70(300﹣15a)=﹣1050a+21000;
③設此項修建項目的總費用為W元,
則W=W1+W2=1200a+(﹣1050a+21000)=150a+21000,
∵k>0,
∴W隨a的增大而增大,
∵2≤a≤5,
∴當a=2時,W有最小值,W最小值=150×2+21000=21300,
答:甬道寬為2米時,修建的甬道和綠地的總造價最低,最低總造價為21300元;
故答案為:①80、70;
科目:初中數(shù)學 來源: 題型:
【題目】在桌面上,有若干個完全相同的小正方體堆成的一個幾何體,如圖所示.
(1)請畫出這個幾何體的三視圖.
(2)若將此幾何體的表面噴上紅漆(放在桌面上的一面不噴),則三個面上是紅色的小正方體有_______個.
(3)若現(xiàn)在你的手頭還有一些相同的小正方體可添放在幾何體上,要保持主視圖和左視圖不變,則最多可以添加________個小正方體.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖1,△ABC中,,AB的垂直平分線交AC于點D,連接BD.若AC=2,BC=1,則△BCD的周長為 ;
(2)O為正方形ABCD的中心,E為CD邊上一點,F為AD邊上一點,且△EDF的周長等于AD的長.
①在圖2中求作△EDF(要求:尺規(guī)作圖,不寫作法,保留作圖痕跡);
②在圖3中補全圖形,求的度數(shù);
③若,則的值為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:已知:A=2a2+3ab﹣2a﹣1,B=﹣a2+ab﹣1.
(1)求2A﹣3B;
(2)若A+2B的值與a的取值無關,求b的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某種計時“香篆”在0:00時刻點燃,若“香篆”剩余的長度h(cm)與燃燒的時間x(h)之間是一次函數(shù)關系,h與x的一組對應數(shù)值如表所示:
燃燒的時間x(h) | … | 3 | 4 | 5 | 6 | … |
剩余的長度h(cm) | … | 210 | 200 | 190 | 180 | … |
(1)寫出“香篆”在0:00時刻點然后,其剩余的長度h(cm)與燃燒時間x(h)的函數(shù)關系式,并解釋函數(shù)表達式中x的系數(shù)及常數(shù)項的實際意義;
(2)通過計算說明當“香篆”剩余的長度為125cm時的時刻.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,O為坐標原點,點A(﹣4,0),直線l∥x軸,交y軸于點C(0,3),點B(﹣4,3)在直線l上,將矩形OABC繞點O按順時針方向旋轉α度,得到矩形OA′B′C′,此時直線OA′、B′C′分別與直線l相交于點P、Q.
(1)當α=90°時,點B′的坐標為 .
(2)如圖2,當點A′落在l上時,點P的坐標為 ;
(3)如圖3,當矩形OA′B′C′的頂點B′落在l上時.
①求OP的長度;②S△OPB′的值是 .
(4)在矩形OABC旋轉的過程中(旋轉角0°<α≤180°),以O,P,B′,Q為頂點的四邊形能否成為平行四邊形?如果能,請直接寫出點B′和點P的坐標;如果不能,請簡要說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知在數(shù)軸上 A,B 兩點對應數(shù)分別為﹣4,20.
(1)若 P 點為線段 AB 的中點,求 P 點對應的數(shù).
(2)若點 A、點 B 同時分別以 2 個單位長度/秒的速度相向運動,點 M(M 點在原點)同時以 4 個單位長度/秒的速度向右運動.幾秒后點 M 到點 A、點 B 的距離相等?求此時 M 對應的數(shù).
(3)在(2)的條件下,是否存在 M 點,使 3MA=2MB?若存在,求出點 M 對應的數(shù);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一個幾何體由大小相同的小立方體搭成,從三個方向看到的幾何體的形狀圖如圖所示.
(1)求A,B,C,D這4個方格位置上的小立方體的個數(shù);
(2)這個幾何體是由多少塊小立方體組成的?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將圖①中的正方形剪開得到圖②,圖②中共有4個正方形;將圖②中一個正方形剪開得到圖③,圖③中共有7個正方形;將圖③中一個正方形剪開得到圖④,圖④中共有10個正方形…,如此下去,則第2014個圖中共有正方形的個數(shù)為( )
A. 2014. B. 2017 C. 6040 D. 6044
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com