【題目】如圖,正方形ABCD的邊長(zhǎng)為6,點(diǎn)E,F分別在邊AB,BC上,若F是BC的中點(diǎn),且∠EDF=45°,則DE的長(zhǎng)為( 。
A. B. C. D.
【答案】B
【解析】
延長(zhǎng)F至G,使CG=AE,連接DG,由SAS證明△ADE≌△CDG,得出DE=DG,∠ADE=∠CDG,再證明△EDF≌△GDF,得出EF=GF,設(shè)AE=CG=x,則EF=GF=3+x,在Rt△BEF中,由勾股定理得出方程,解方程得出AE=2,在Rt△ADE中,由勾股定理求出DE即可.
解:延長(zhǎng)F至G,使CG=AE,連接DG、EF,如圖所示:
∵四邊形ABCD是正方形,
∴AD=AB=BC=CD=6,∠A=∠B=∠DCF=∠ADC=90°,
∴∠DCG=90°,
在△ADE和△CDG中,,
∴△ADE≌△CDG(SAS),
∴DE=DG,∠ADE=∠CDG,
∴∠EDG=∠CDE+∠CDG=∠CDE+∠ADE=90°,
∵∠EDF=45°,
∴∠GDF=45°,
在△EDF和△GDF中,,
∴△EDF≌△GDF(SAS),
∴EF=GF,
∵F是BC的中點(diǎn),
∴BF=CF=3,
設(shè)AE=CG=x,則EF=GF=3+x,
在Rt△BEF中,由勾股定理得:32+(6﹣x)2=(3+x)2,
解得:x=2,即AE=2,
在Rt△ADE中,由勾股定理得:DE=;
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】圖(a)是正方形紙板制成的一副七巧板.
(1)請(qǐng)你在圖(a)中給它的每一小塊用①~⑦編號(hào)(編號(hào)直接標(biāo)在每一小塊對(duì)應(yīng)圖形內(nèi)部的空白處;每小塊只能與一個(gè)編號(hào)對(duì)應(yīng),每個(gè)編號(hào)只能和一個(gè)小塊對(duì)應(yīng)),并同時(shí)滿足以下三個(gè)條件:
條件1:編號(hào)為①~③的三小塊可以拼成一個(gè)軸對(duì)稱圖形;
條件2:編號(hào)為④~⑥的三小塊可以拼成一個(gè)中心對(duì)稱圖形;
條件3:編號(hào)為⑦的小塊是中心對(duì)稱圖形.
(2)請(qǐng)你在圖(b)中畫出編號(hào)為①~③的三小塊拼出的軸對(duì)稱圖形;在圖(c)中畫出編號(hào)為④~⑥的三小塊拼出的中心對(duì)稱圖形.(注意:沒有編號(hào)不得分)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某單位需以“掛號(hào)信”或“特快專遞”方式向五所學(xué)校各寄一封信,這五封信的重量分別是.根據(jù)這五所學(xué)校的地址及信件的重量范圍,在郵局查得相關(guān)郵費(fèi)標(biāo)準(zhǔn)如下:
業(yè)務(wù)種類 | 計(jì)費(fèi)單位 | 資費(fèi)標(biāo)準(zhǔn)/元 | 掛號(hào)費(fèi)/(元/封) | 特制信封(元/個(gè)) |
掛號(hào)信 | 首重100g,每重20g | 0.8 | 3 | 0.5 |
續(xù)重101~2000g,每重100g | 2.00 | |||
特制信封 | 首重1000g內(nèi) | 5.00 | 3 | 1.0 |
(1)重量為90g的信若以“掛號(hào)信”方式寄出,郵寄費(fèi)為多少元?若以“特快專遞”方式寄出呢?
(2)這五封信分別以怎樣的方式寄出最合算?請(qǐng)說(shuō)明理由.
(3)通過(guò)解答上述問(wèn)題,你有何啟示?(請(qǐng)你用一兩句話說(shuō)明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以AC為直徑作⊙O,交AB于D,過(guò)點(diǎn)O作OE∥AB,交BC于E.
(1)求證:ED為⊙O的切線;
(2)如果⊙O的半徑為,ED=2,延長(zhǎng)EO交⊙O于F,連接DF、AF,求△ADF的面積.
【答案】(1)證明見解析;(2)
【解析】試題分析:(1)首先連接OD,由OE∥AB,根據(jù)平行線與等腰三角形的性質(zhì),易證得≌ 即可得,則可證得為的切線;
(2)連接CD,根據(jù)直徑所對(duì)的圓周角是直角,即可得 利用勾股定理即可求得的長(zhǎng),又由OE∥AB,證得根據(jù)相似三角形的對(duì)應(yīng)邊成比例,即可求得的長(zhǎng),然后利用三角函數(shù)的知識(shí),求得與的長(zhǎng),然后利用S△ADF=S梯形ABEF-S梯形DBEF求得答案.
試題解析:(1)證明:連接OD,
∵OE∥AB,
∴∠COE=∠CAD,∠EOD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠COE=∠DOE,
在△COE和△DOE中,
∴△COE≌△DOE(SAS),
∴ED⊥OD,
∴ED是的切線;
(2)連接CD,交OE于M,
在Rt△ODE中,
∵OD=32,DE=2,
∵OE∥AB,
∴△COE∽△CAB,
∴AB=5,
∵AC是直徑,
∵EF∥AB,
∴S△ADF=S梯形ABEFS梯形DBEF
∴△ADF的面積為
【題型】解答題
【結(jié)束】
25
【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個(gè)公共點(diǎn)M(1,0),且a<b.
(1)求b與a的關(guān)系式和拋物線的頂點(diǎn)D坐標(biāo)(用a的代數(shù)式表示);
(2)直線與拋物線的另外一個(gè)交點(diǎn)記為N,求△DMN的面積與a的關(guān)系式;
(3)a=﹣1時(shí),直線y=﹣2x與拋物線在第二象限交于點(diǎn)G,點(diǎn)G、H關(guān)于原點(diǎn)對(duì)稱,現(xiàn)將線段GH沿y軸向上平移t個(gè)單位(t>0),若線段GH與拋物線有兩個(gè)不同的公共點(diǎn),試求t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)習(xí)了統(tǒng)計(jì)知識(shí)后,小明就本班同學(xué)的上學(xué)方式進(jìn)行了一次調(diào)查統(tǒng)計(jì).圖(1)和圖(2)是他通過(guò)采集數(shù)據(jù)后,繪制的兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)你根據(jù)圖中提供的信息,解答以下問(wèn)題:
(1)求該班學(xué)生的人數(shù);
(2)在圖(1)中,將表示“步行”的部分補(bǔ)充完整;
(3)如果全年級(jí)共600名同學(xué),請(qǐng)你估算全年級(jí)步行上學(xué)的學(xué)生人數(shù)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC中,∠ABC=90°,AB=BC,三角形的頂點(diǎn)在相互平行的三條直線l1,l2,l3上,且l1、l2之間的距離為2,l2、l3之間的距離為3,則AC的長(zhǎng)是_________;
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列定義一種關(guān)于n的運(yùn)算:①當(dāng)n是奇數(shù)時(shí),結(jié)果為3n+5②當(dāng)n為偶數(shù)時(shí),結(jié)果是(其中k是使是奇數(shù)的正整數(shù)),運(yùn)算重復(fù)進(jìn)行,如:取n=26,則26134411……若n=449,則第449次運(yùn)算的結(jié)果是( 。
A.1B.2C.7D.8
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題背景:
小紅同學(xué)在學(xué)習(xí)過(guò)程中遇到這樣一道計(jì)算題“計(jì)算4×2.112-4×2.11×2.22+2.222”,她覺得太麻煩,估計(jì)應(yīng)該有可以簡(jiǎn)化計(jì)算的方法,就去請(qǐng)教崔老師.崔老師說(shuō):你完成下面的問(wèn)題后就可能知道該如何簡(jiǎn)化計(jì)算啦!
獲取新知:
請(qǐng)你和小紅一起完成崔老師提供的問(wèn)題:
(1)填寫下表:
x=-1,y=1 | x=1,y=0 | x=3,y=2 | x=2,y=-1 | x=2,y=3 | |
A=2x-y | -3 | 2 | 4 | 5 | 1 |
B=4x2-4xy+y2 | 9 | 4 | 16 |
(2)觀察表格,你發(fā)現(xiàn)A與B有什么關(guān)系?
解決問(wèn)題:
(3)請(qǐng)利用A與B之間的關(guān)系計(jì)算:4×2.112-4×2.11×2.22+2.222.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com