已知:拋物線y=ax2+bx+c經(jīng)過原點(0,0)和A(1,-3),B(-1,5)兩點.
(1)求拋物線的解析式;
(2)設拋物線與x軸的另一個交點為C,以OC為直徑作⊙M,如果過拋物線上一點P作⊙M的切線PD,切點為D,且與y軸的正半軸交點為E,連接MD,已知E點的坐標為(0,m),求四邊形EOMD的面積(用含m的代數(shù)式表示);
(3)延長DM交⊙M于點N,連接ON,OD,當點P在(2)的條件下運動到什么位置時,能使得四邊形EOMD和△DON的面積相等,請求出此時點P的坐標.
(1)∵拋物線過O(0,0),A(1,-3),B(-1,5)三點,
c=0
a+b+c=-3
a-b+c=5
,
解得
a=1
b=-4
c=0

∴拋物線的解析式為y=x2-4x;

(2)拋物線y=x2-4x與x軸的另一個交點坐標為C(4,0),連接EM;
∴⊙M的半徑為2,即OM=DM=2;
∵ED、EO都是⊙M的切線,
∴EO=ED,△EOM≌△EDM;
∴S四邊形EOMD=2S△OME=2×
1
2
OM•OE=2m;

(3)延長DM交⊙M于點N,連接ON,OD,EM,
設點D的坐標為(x0,y0),
∵S△DON=2S△DOM=2×
1
2
OM×y0=2y0,
當S四邊形EOMD=S△DON時,即2m=2y0,m=y0;
∵m=y0,EDx軸,
又∵ED為切線,
∴D點的坐標為(2,2);
∵P在直線ED上,故設P點的坐標為(x,2),
∵P在拋物線上,
∴2=x2-4x,
解得x=2±
6
;
∴P(2+
6
,2)或P(2-
6
,2)為所求.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,拋物線y=
1
2
x2+bx+c與y軸交于點C,與x軸相交于A,B兩點,點A的坐標為(2,0),點C的坐標為(0,-4).
(1)求拋物線的解析式;
(2)點Q是線段OB上的動點,過點Q作QEBC,交AC于點E,連接CQ,設OQ=m,當△CQE的面積最大時,求m的值,并寫出點Q的坐標;
(3)若平行于x軸的動直線,與該拋物線交于點P,與直線BC交于點F,D的坐標為(-2,0),則是否存在這樣的直線l,使OD=DF?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:如圖,拋物線y=ax2+bx+c的頂點為C(1,0),且與直線l:y=x+m交y軸于同一點B(0,1),與直線l交于另一點A,D為拋物線的對稱軸與直線l的交點,P為線段AB上的一動點(不與點A、B重合),過點P作y軸的平行線交拋物線于點E.
(1)求拋物線和直線l的函數(shù)解析式,及另一交點A的坐標;
(2)求△ABE的最大面積是多少?
(3)問是否存在這樣的點P,使四邊形PECD為平行四邊形?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知二次函數(shù)的圖象經(jīng)過A(2,0)、C(0,12)兩點,且對稱軸為直線x=4.設頂點為點P,與x軸的另一交點為點B.
(1)求二次函數(shù)的解析式及頂點P的坐標;
(2)如圖1,在直線y=2x上是否存在點D,使四邊形OPBD為等腰梯形?若存在,求出點D的坐標;若不存在,請說明理由;
(3)如圖2,點M是線段OP上的一個動點(O、P兩點除外),以每秒
2
個單位長度的速度由點P向點O運動,過點M作直線MNx軸,交PB于點N.將△PMN沿直線MN對折,得到△P1MN.在動點M的運動過程中,設△P1MN與梯形OMNB的重疊部分的面積為S,運動時間為t秒.求S關于t的函數(shù)關系式.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

某商場將每件進價為80元的某種商品原來按每件100元出售,一天可售出100件,經(jīng)調(diào)查這種商品每降低1元,其銷量可增加10件.
①求商場原來一天可獲利潤多少元?
②設后來該商品每件降價x元,一天可獲利潤y元.
1)若經(jīng)營該商品一天要獲利2160元,則每件商品應降價多少元?
2)當售價為多少時,獲利最大并求最大值?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

已知拋物線的頂點為A(2,1),且經(jīng)過原點O,與x軸的另一個交點為B,若點C在拋物線的對稱軸上,點D在拋物線上,且以O,C,D,B四點為頂點的四邊形為平行四邊形,則D點的坐標為______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:0<a<b<c,實數(shù)x、y滿足2x+2y=a+b+c,2xy=ac,且x<y.求證:0<x<a,b<y<c.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

某果品公司為指導今年的櫻桃銷售,對往年的市場銷售情況進行調(diào)查統(tǒng)計,得到如下數(shù)據(jù):
銷售價x(元/kg)25242322
銷售量y(kg)2000250030003500
(1)在如圖坐標系中作出各組有序數(shù)對(x,y)所對應點,連接并觀察所得圖象,判定y與x之間函數(shù)關系式,并求出y與x關系式.
(2)若櫻桃進價為12元/kg,求銷售利潤P(元)與銷售價x(元/kg)之間函數(shù)關系式,并求售價多少元時,利潤最大?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

用鋁合金型材做一個形狀如圖1所示的矩形窗框,設窗框的一邊為xm,窗戶的透光面積為ym2,y與x的函數(shù)圖象如圖2所示.
(1)觀察圖象,當x為何值時,窗戶透光面積最大?
(2)當窗戶透光面積最大時,窗框的另一邊長是多少?

查看答案和解析>>

同步練習冊答案