【題目】如圖,已知矩形中,與相交于,平分交于,,則的度數(shù)為( )
A.B.C.D.
【答案】B
【解析】
因為DE平分∠ADC,可證得△ECD為等腰直角三角形,得EC=CD, 因為∠BDE=15°,可求得∠CDO=60°,易證△CDO為等邊三角形,等量代換可得CE=CO,即∠COE=∠CEO,而∠ECO=30°,利用三角形內(nèi)角和為180°,即可求得∠COE=75°.
解:∵四邊形ABCD為矩形,且DE平分∠ADC,
∴∠CDE=∠CED=45,即△ECD為等腰直角三角形,
∴CE=CD,
∵∠BDE=15°,
∴∠CDO=45°+15°=60°,
∵OD=OC,
∴△CDO為等邊三角形,即OC=OD=CD,
∴CE=OC,
∴∠COE=∠CEO,
而∠OCE=90°-60°=30°,
∴∠COE=∠CEO==75°.
故選B.
科目:初中數(shù)學 來源: 題型:
【題目】某校學生會發(fā)現(xiàn)同學們就餐時剩余飯菜較多,浪費嚴重,于是準備在校內(nèi)倡導“光盤行動”,讓同學們珍惜糧食,為了讓同學們理解這次活動的重要性,校學生會在某天午餐后,隨機調(diào)查了部分同學這餐飯菜的剩余情況,并將結(jié)果統(tǒng)計后繪制成了如圖所示的不完整的統(tǒng)計圖.
(1)這次被調(diào)查的同學共有 人;
(2)補全條形統(tǒng)計圖,并在圖上標明相應(yīng)的數(shù)據(jù);
(3)校學生會通過數(shù)據(jù)分析,估計這次被調(diào)查的所有學生一餐浪費的食物可以供50人食用一餐.據(jù)此估算,該校18000名學生一餐浪費的食物可供多少人食用一餐.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(本題8分)△ABC在平面直角坐標系中的位置如圖所示,其中每個小正方形的邊長為1個單位長度.
(1)按要求作圖:
①畫出△ABC關(guān)于原點O的中心對稱圖形△A1B1C1;
②畫出將△ABC繞點A逆時針旋轉(zhuǎn)90°得到△AB2C2,
(2)回答下列問題:
①△A1B1C1中頂點A1坐標為 ;②若P(a,b)為△ABC邊上一點,則按照(1)中①作圖,點P對應(yīng)的點P1的坐標為 .
【答案】(1)作圖見解析;(2)(1,-2)(-a,-b)
【解析】試題分析:(1)首先找出對應(yīng)點的位置,再順次連接即可;
(2)①根據(jù)圖形可直接寫出坐標;②根據(jù)關(guān)于原點對稱點的坐標特點可得答案.
試題解析:(1)如圖所示:
(2)①根據(jù)圖形可得A1坐標為(2,﹣4);
②點P1的坐標為(﹣a,﹣b).
故答案為:(﹣2,﹣4);(﹣a,﹣b).
考點:作圖-旋轉(zhuǎn)變換.
【題型】填空題
【結(jié)束】
23
【題目】在學習了“普查與抽樣調(diào)查”之后,某校八(1)班數(shù)學興趣小組對該校學生的視力情況進行了抽樣調(diào)查,并畫出了如圖所示的條形統(tǒng)計圖.請根據(jù)圖中信息解決下列問題:
(1)本次抽查活動中共抽查了 名學生;
(2)已知該校七年級、八年級、九年級學生數(shù)分別為360人、400人、540人.
①試估算:該校九年級視力不低于4.8的學生約有 名;
②請你幫忙估算出該校視力低于4.8的學生數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2018年5月12日是我國第十個全國防災減災日,也是汶川地震十周年.為了弘揚防災減災文化,普及防災減災知識和技能,鄭州W中學通過學校安全教育平臺號召全校學生進行學習,并對學生學習成果進行了隨機抽取,現(xiàn)對部分學生成績(x為整數(shù),滿分100分)進行統(tǒng)計.繪制了如圖尚不完整的統(tǒng)計圖表:
調(diào)查結(jié)果統(tǒng)計表
組別 | 分數(shù)段 | 頻數(shù) |
A | 50≤x<60 | a |
B | 60≤x<70 | 80 |
C | 70≤x<80 | 100 |
D | 80≤x<90 | 150 |
E | 90≤x<100 | 120 |
合計 | b |
根據(jù)以上信息解答下列問題:
(1)填空:a= ,b= ;
(2)扇形統(tǒng)計圖中,m的值為 ,“D”所對應(yīng)的圓心角的度數(shù)是 度;
(3)本次調(diào)查測試成績的中位數(shù)落在 組內(nèi);
(4)若參加學習的同學共有2000人,請你估計成績在90分及以上的同學大約有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某公司分兩次采購甲、乙兩種商品,具體情況如下:
(1)求甲、乙商品每件各多少元?
(2)公司計劃第三次采購甲、乙兩種商品共31件,要求花費資金不超過475元,問最多可購買甲商品多少件?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點是雙曲線在第一象限上的一動點,連接,以為一邊作等腰直角三角形(),點在第四象限,隨著點的運動,點的位置也不斷的變化,但始終在某個函數(shù)圖像上運動,則這個函數(shù)表達式為______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某電器超市銷售每臺進價分別為200元,170元的A,B兩種型號的電風扇,表中是近兩周的銷售情況:
銷售時段 | 銷售數(shù)量 | 銷售收入 | |
A種型號 | B種型號 | ||
第一周 | 3臺 | 5臺 | 1800元 |
第二周 | 4臺 | 10臺 | 3100元 |
(進價、售價均保持不變,利潤=銷售收入-進貨成本)
(1)求A,B兩種型號的電風扇的銷售單價.
(2)若超市準備用不多于5400元的金額再采購這兩種型號的電風扇共30臺,則A種型號的電風扇最多能采購多少臺?
(3)在(2)的條件下,超市銷售完這30臺電風扇能否實現(xiàn)利潤為1400元的目標?若能,請給出相應(yīng)的采購方案;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某大型超市從生產(chǎn)基地購進一批水果,運輸過程中質(zhì)量損失10%,假設(shè)超市購進這批水果的總量為m千克,每千克進價為n元(不計超市其它費用).
(1)如果超市在進價的基礎(chǔ)上提高10%作為售價,此時:
①超市最終的銷售額為_________元(用含m、n的代數(shù)式表示);
②在這一次銷售中,超市_______(填:盈利或虧本).
(2)如果超市至少要獲得17%的利潤,請通過計算說明這種水果的售價最低應(yīng)提高百分之幾?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AB=AC,AD是△ABC的角平分線,點O為AB的中點,連接DO并延長到點E,使OE=OD,連接AE,BE.
(1)求證:四邊形AEBD是矩形;
(2)當△ABC滿足什么條件時,矩形AEBD是正方形,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com