【題目】計(jì)算
(1)(﹣2)3+( )﹣2×22﹣(π﹣2)0
(2)5x2y÷(﹣ xy)3xy2 .
【答案】
(1)解:(﹣2)3+( )﹣2×22﹣(π﹣2)0
=﹣8+ ×4﹣0
=﹣8+4×4﹣0
=8
(2)解:5x2y÷(﹣ xy)3xy2
=(5 )X2﹣1y1﹣13xy2
=﹣10x3xy2
=﹣30x2y2
【解析】(1)先算乘方,再算加減,利用公式:(a)﹣p= (a≠0);a0=1(a≠0)(2)單項(xiàng)式與單項(xiàng)式的乘除混合運(yùn)算,按從左向右的順序進(jìn)行計(jì)算,運(yùn)算時(shí)注意符號(hào).
【考點(diǎn)精析】認(rèn)真審題,首先需要了解零指數(shù)冪法則(零次冪和負(fù)整數(shù)指數(shù)冪的意義: a0=1(a≠0);a-p=1/ap(a≠0,p為正整數(shù))),還要掌握整數(shù)指數(shù)冪的運(yùn)算性質(zhì)(aman=am+n(m、n是正整數(shù));(am)n=amn(m、n是正整數(shù));(ab)n=anbn(n是正整數(shù));am/an=am-n(a不等于0,m、n為正整數(shù));(a/b)n=an/bn(n為正整數(shù)))的相關(guān)知識(shí)才是答題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,Rt△OAB如圖所示放置在平面直角坐標(biāo)系中,直角邊OA與x軸重合,∠OAB=90°,OA=4,AB=2,把Rt△OAB繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,點(diǎn)B旋轉(zhuǎn)到點(diǎn)C的位置,一條拋物線正好經(jīng)過(guò)點(diǎn)O,C,A三點(diǎn).
(1)求該拋物線的解析式;
(2)在x軸上方的拋物線上有一動(dòng)點(diǎn)P,過(guò)點(diǎn)P作x軸的平行線交拋物線于點(diǎn)M,分別過(guò)點(diǎn)P,點(diǎn)M作x軸的垂線,交x軸于E,F(xiàn)兩點(diǎn),問(wèn):四邊形PEFM的周長(zhǎng)是否有最大值?如果有,請(qǐng)求出最值,并寫出解答過(guò)程;如果沒(méi)有,請(qǐng)說(shuō)明理由.
(3)如果x軸上有一動(dòng)點(diǎn)H,在拋物線上是否存在點(diǎn)N,使O(原點(diǎn))、C、H、N四點(diǎn)構(gòu)成以O(shè)C為一邊的平行四邊形?若存在,求出N點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明和小剛進(jìn)行賽跑訓(xùn)練,他們選擇了一個(gè)土坡,按同一路線同時(shí)出發(fā),從坡腳跑到坡頂再原路返回坡腳.他們倆上坡的平均速度不同,下坡的平均速度則是各自上坡平均速度的1. 5倍.設(shè)兩人出發(fā)x min后距出發(fā)點(diǎn)的距離為y m.圖中折線段OBA表示小明在整個(gè)訓(xùn)練中y與x的函數(shù)關(guān)系,其中點(diǎn)A在x軸上,點(diǎn)B坐標(biāo)為(2,480).
(1)點(diǎn)B所表示的實(shí)際意義是 ;
(2)求出AB所在直線的函數(shù)關(guān)系式;
(3)如果小剛上坡平均速度是小明上坡平均速度的一半,那么兩人出發(fā)后多長(zhǎng)時(shí)間第一次相遇?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于x一元二次方程x2+mx+n=0.
(1)當(dāng)m=n+2時(shí),利用根的判別式判斷方程根的情況.
(2)若方程有實(shí)數(shù)根,寫出一組滿足條件的m,n的值,并求此時(shí)方程的根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明同學(xué)在解一元二次方程時(shí),他是這樣做的:
解一元二次方程
3x2﹣8x(x﹣2)=0…第一步
3x﹣8x﹣2=0…第二步
﹣5x﹣2=0…第三步
﹣5x=2…第四步
x=﹣…第五步
(1)小明的解法從第 步開(kāi)始出現(xiàn)錯(cuò)誤;此題的正確結(jié)果是 .
(2)用因式分解法解方程:x(2x﹣1)=3(2x﹣1).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法正確的是( )
A. 相似三角形一定全等B. 不相似的三角形不一定全等
C. 全等三角形不一定是相似三角形D. 全等三角形一定是相似三角形
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y=k1x+b1與反比例函數(shù)y=的圖象及坐標(biāo)軸依次相交于A、B、C、D四點(diǎn),且點(diǎn)A坐標(biāo)為(﹣3,),點(diǎn)B坐標(biāo)為(1,n).
(1)求反比例函數(shù)及一次函數(shù)的解析式;
(2)求證:AC=BD;
(3)若將一次函數(shù)的圖象上下平移若干個(gè)單位后得到y(tǒng)=k1x+n,其與反比例函數(shù)圖象及兩坐標(biāo)軸的交點(diǎn)仍然依次為A、B、C、D.(2)中的結(jié)論還成立嗎?請(qǐng)寫出理由,對(duì)于任意k<0的直線y=kx+b.(2)中的結(jié)論還成立嗎?(請(qǐng)直接寫出結(jié)論)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com