如圖,四邊形ABCD是邊長(zhǎng)為2,一個(gè)銳角等于60°的菱形紙片,小芳同學(xué)將一個(gè)三角形紙片的一個(gè)頂點(diǎn)與該菱形頂點(diǎn)D重合,按順時(shí)針方向旋轉(zhuǎn)三角形紙片,使它的兩邊分別交CB、BA(或它們的延長(zhǎng)線)于點(diǎn)E、F,∠EDF=60°,當(dāng)CE=AF時(shí),如圖1小芳同學(xué)得出的結(jié)論是DE=DF.
(1)繼續(xù)旋轉(zhuǎn)三角形紙片,當(dāng)CE≠AF時(shí),如圖2小芳的結(jié)論是否成立?若成立,加以證明;若不成立,請(qǐng)說明理由;
(2)再次旋轉(zhuǎn)三角形紙片,當(dāng)點(diǎn)E、F分別在CB、BA的延長(zhǎng)線上時(shí),如圖3請(qǐng)直接寫出DE與DF的數(shù)量關(guān)系;
(3)連EF,若△DEF的面積為y,CE=x,求y與x的關(guān)系式,并指出當(dāng)x為何值時(shí),y有最小值,最小值是多少?
解:(1)DF=DE.理由如下:
如答圖1,連接BD.
∵四邊形ABCD是菱形,
∴AD=AB.
又∵∠A=60°,
∴△ABD是等邊三角形,
∴AD=BD,∠ADB=60°,
∴∠DBE=∠A=60°
∵∠EDF=60°,
∴∠ADF=∠BDE.∵在△ADF與△BDE中,,
∴△ADF≌△BDE(ASA),
∴DF=DE;
(2)DF=DE.理由如下:
如答圖2,連接BD.∵四邊形ABCD是菱形,
∴AD=AB.
又∵∠A=60°,
∴△ABD是等邊三角形,
∴AD=BD,∠ADB=60°,
∴∠DBE=∠A=60°
∵∠EDF=60°,
∴∠ADF=∠BDE.
∵在△ADF與△BDE中,,
∴△ADF≌△BDE(ASA),
∴DF=DE;
(3)由(2)知,△ADF≌△BDE.則S△ADF=S△BDE,AF=BE=x.
依題意得:y=S△BEF+S△ABD=(2+x)xsin60°+×2×2sin60°=(x+1)2+.即y=(x+1)2+.
∵>0,
∴該拋物線的開口方向向上,
∴當(dāng)x=0即點(diǎn)E、B重合時(shí),y最小值=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
一組數(shù)據(jù)2、3、4、4、5、5、5的中位數(shù)和眾數(shù)分別是( 。
A.3.5,5 B.4,4 C.4,5 D.4.5,4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
根據(jù)道路管理規(guī)定,在賀州某段筆直公路上行駛的車輛,限速40千米/時(shí),已知交警測(cè)速點(diǎn)M到該公路A點(diǎn)的距離為米,∠MAB=45°,∠MBA=30°(如圖所示),現(xiàn)有一輛汽車由A往B方向勻速行駛,測(cè)得此車從A點(diǎn)行駛到B點(diǎn)所用的時(shí)間為3秒.
(1)求測(cè)速點(diǎn)M到該公路的距離;
(2)通過計(jì)算判斷此車是否超速.(參考數(shù)據(jù):≈1.41,≈1.73,≈2.24)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,AB是⊙O的直徑,OB=3,BC是⊙O的弦,∠ABC的平分線交⊙O于點(diǎn)D,連接OD,若∠BAC=20°,則的長(zhǎng)等于 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在一個(gè)18米高的樓頂上有一信號(hào)塔DC,李明同學(xué)為了測(cè)量信號(hào)塔的高度,在地面的A處測(cè)的信號(hào)塔下端D的仰角為30°,然后他正對(duì)塔的方向前進(jìn)了18米到達(dá)地面的B處,又測(cè)得信號(hào)塔頂端C的仰角為60°,CD⊥AB與點(diǎn)E,E、B、A在一條直線上.請(qǐng)你幫李明同學(xué)計(jì)算出信號(hào)塔CD的高度(結(jié)果保留整數(shù),≈1.7,≈1.4 )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
一組數(shù)據(jù)2,3,1,2,2的中位數(shù)、眾數(shù)和方差分別是( 。
A.1,2,0.4 B. 2,2,4.4 C. 2,2,0.4 D. 2,1,0.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在平面直角坐標(biāo)系中,等腰△OBC的邊OB在x軸上,OB=CB,OB邊上的高CA與OC邊上的高BE相交于點(diǎn)D,連接OD,AB=,∠CBO=45°,在直線BE上求點(diǎn)M,使△BMC與△ODC相似,則點(diǎn)M的坐標(biāo)是 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com