【題目】如圖,△ABC和△ADE都是等腰三角形,且∠BAC=90°,∠DAE=90°,B,C,D在同一條直線上.求證:BD=CE.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,AB=6,∠B=60°,點G是邊CD邊的中點,點E、F分別是AG、AD上的兩個動點,則EF+ED的最小值是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某公司有10名工作人員,他們的月工資情況如表,
職務(wù) | 經(jīng)理 | 副經(jīng)理 | A類職員 | B類職員 | C類職員 |
人數(shù) | 1 | 2 | 2 | 4 | 1 |
月工資(萬元/人) | 2 | 1.2 | 0.8 | 0.6 | 0.4 |
根據(jù)表中信息,該公司工作人員的月工資的眾數(shù)是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】 下列是假命題的是( )
A.對角線互相平分且相等的四邊形是矩形
B.垂直于弦的直徑必平分弦
C.在同圓或等圓中,相等的弦所對的圓周角相等
D.順次連接平行四邊形的四邊中點,得到的四邊形是平行四邊形
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,小明用自制的直角三角形紙板DEF測量樹AB的高度,他調(diào)整自己的位置,使斜邊DF保持水平,并且邊DE與點B在同一直線上,已知紙板的兩條直角邊DE=40 cm,EF=20 cm,測得邊DF離地面的高度AC=1.5 m, CD=10 m,請你幫小明求下樹的高度。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知A,D,E三點共線,C,B,F三點共線,AB=CD,AD=CB,DE=BF,那么BE與DF之間有什么數(shù)量關(guān)系?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xoy中,直線與x 軸交于點A,與y軸交于點C.拋物線y=ax2+bx+c的對稱軸是且經(jīng)過A、C兩點,與x軸的另一交點為點B.
(1)①直接寫出點B的坐標;②求拋物線解析式.
(2)若點P為直線AC上方的拋物線上的一點,連接PA,PC.求△PAC的面積的最大值,并求出此時點P的坐標.
(3)拋物線上是否存在點M,過點M作MN垂直x軸于點N,使得以點A、M、N為頂點的三角形與△ABC相似?若存在,直接寫出點M的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列事件,是必然事件的是( )
A.投擲一次骰子向上一面的點數(shù)是6B.童威在罰球線上投籃一次未投中
C.任意畫一個多邊形其外角和是360°D.經(jīng)過有交通信號燈的路口遇到紅燈
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD的邊BC與x軸重合,連接對角線BD交y軸于點E,過點A作AG⊥BD于點G,直線GF交AD于點F,AB、OC的長分別是一元二次方程x-5x+6=0的兩根(AB>OC),且tan∠ADB=.
(1)求點E、點G的坐標;
(2)直線GF分△AGD為△AGF與△DGF兩個三角形,且S△AGF:S△DGF =3:1,求直線GF的解析式;
(3)點P在y軸上,在坐標平面內(nèi)是否存在一點Q,使以點B、D、P、Q為頂點的四邊形是矩形?若存在,請直接寫出點Q的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com