【題目】如圖,已知ABC中,AB=AC=10cm,BC=8cm,點(diǎn)DAB的中點(diǎn).

(1)如果點(diǎn)P在線(xiàn)段BC上以3cm/s的速度由B點(diǎn)向C點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn)Q在線(xiàn)段CA上由C點(diǎn)向A點(diǎn)運(yùn)動(dòng).

①若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度相等,經(jīng)過(guò)1s后,BPDCQP是否全等,請(qǐng)說(shuō)明理由;

②若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度不相等,當(dāng)點(diǎn)Q的運(yùn)動(dòng)速度為多少時(shí),能夠使BPDCQP全等?

(2)若點(diǎn)Q以②中的運(yùn)動(dòng)速度從點(diǎn)C出發(fā),點(diǎn)P以原來(lái)的運(yùn)動(dòng)速度從點(diǎn)B同時(shí)出發(fā),都逆時(shí)針沿ABC三邊運(yùn)動(dòng),求經(jīng)過(guò)多長(zhǎng)時(shí)間點(diǎn)P與點(diǎn)Q第一次在ABC的哪條邊上相遇?

【答案】1)利用SAS公式求證(2

【解析】

解:(1①∵秒,

厘米,

厘米,點(diǎn)的中點(diǎn),

厘米.

厘米,

厘米,

,

②∵,

,,則,

點(diǎn),點(diǎn)運(yùn)動(dòng)的時(shí)間秒,

厘米/秒.

2)設(shè)經(jīng)過(guò)秒后點(diǎn)與點(diǎn)第一次相遇,

由題意,得,

解得秒.

點(diǎn)共運(yùn)動(dòng)了厘米.

,

點(diǎn)、點(diǎn)邊上相遇,

經(jīng)過(guò)秒點(diǎn)與點(diǎn)第一次在邊上相遇.

1根據(jù)時(shí)間和速度分別求得兩個(gè)三角形中的邊的長(zhǎng),根據(jù)SAS判定兩個(gè)三角形全等.

根據(jù)全等三角形應(yīng)滿(mǎn)足的條件探求邊之間的關(guān)系,再根據(jù)路程=速度×時(shí)間公式,先求得點(diǎn)P運(yùn)動(dòng)的時(shí)間,再求得點(diǎn)Q的運(yùn)動(dòng)速度;

2)根據(jù)題意結(jié)合圖形分析發(fā)現(xiàn):由于點(diǎn)Q的速度快,且在點(diǎn)P的前邊,所以要想第一次相遇,則應(yīng)該比點(diǎn)P多走三角形的兩個(gè)邊AB,AC的長(zhǎng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】密蘇里州圣路易斯拱門(mén)是座雄偉壯觀(guān)的拋物線(xiàn)形的建筑物,是美國(guó)最高的獨(dú)自挺立的紀(jì)念碑,如圖.拱門(mén)的地面寬度為200米,兩側(cè)距地面高150米處各有一個(gè)觀(guān)光窗,兩窗的水平距離為100米,求拱門(mén)的最大高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明在學(xué)習(xí)了《展開(kāi)與折疊》這一課后,明白了很多幾何體都能展開(kāi)成平面圖形.于是他在家用剪刀展開(kāi)了一個(gè)長(zhǎng)方體紙盒,可是一不小心多剪了一條棱,把紙盒剪成了兩部分,即圖中的①和②.根據(jù)你所學(xué)的知識(shí),回答下列問(wèn)題:

(1)小明總共剪開(kāi)了_______條棱.

(2)現(xiàn)在小明想將剪斷的②重新粘貼到①上去,而且經(jīng)過(guò)折疊以后,仍然可以還原成一個(gè)長(zhǎng)方體紙盒,你認(rèn)為他應(yīng)該將剪斷的紙條粘貼到①中的什么位置?請(qǐng)你幫助小明在①上補(bǔ)全.

(3)小明說(shuō):他所剪的所有棱中,最長(zhǎng)的一條棱是最短的一條棱的5倍.現(xiàn)在已知這個(gè)長(zhǎng)方體紙盒的底面是一個(gè)正方形,并且這個(gè)長(zhǎng)方體紙盒所有棱長(zhǎng)的和是880cm,求這個(gè)長(zhǎng)方體紙盒的體積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖所示,B、C、D三點(diǎn)在同一條直線(xiàn)上,AC=CD,∠B=∠E=90°,AC⊥CD,則不正確的結(jié)論是( 。

A. A與D互為余角 B. ∠A=∠2 C. △ABC≌△ CED D. ∠1=∠2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,AB的垂直平分線(xiàn)DEBC的延長(zhǎng)線(xiàn)于點(diǎn)F,若∠F=30°,DE=1,試求EF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一只甲蟲(chóng)在55的方格(每一格邊長(zhǎng)為1)上沿著網(wǎng)格線(xiàn)運(yùn)動(dòng),A處出發(fā)去看望B、C、D處的甲蟲(chóng),規(guī)定:向上向右為正,向下向左為負(fù).例如:從AB記為:(+1,+3);從CD 記為:(+1,-2),其中第一個(gè)數(shù)表示左右方向,第二個(gè)數(shù)表示上下方向.

(1)填空:記為 , ), 記為 , );

(2)若甲蟲(chóng)的行走路線(xiàn)為:,請(qǐng)你計(jì)算甲蟲(chóng)走過(guò)的路程.

(3)若這只甲蟲(chóng)去Q的行走路線(xiàn)依次為:A→M(+2,+2),M→N(+2,-1),N→P(-2,+3),P→Q(-1,-2),請(qǐng)依次在圖2標(biāo)出點(diǎn)M、N、P、Q的位置.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知y是x的二次函數(shù),當(dāng)x=2時(shí),y=﹣4,當(dāng)y=4時(shí),x恰為方程2x2﹣x﹣8=0的根.
(1)解方程 2x2﹣x﹣8=0
(2)求這個(gè)二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:
(1)(x+1)2﹣x(1﹣x)﹣2x2
(2) ÷( ﹣a﹣b)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,∠BAC=90°,ABC=2C,BE平分∠ABCACE,ADBED,下列結(jié)論:①AC﹣BE=AE;②點(diǎn)E在線(xiàn)段BC的垂直平分線(xiàn)上;③∠DAE=C;BC=4AD,其中正確的有( 。

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案