【題目】從三角形(不是等腰三角形)一個(gè)頂點(diǎn)引出一條射線與對(duì)邊相交,頂點(diǎn)與交點(diǎn)之間的線段把這個(gè)三角形分割成兩個(gè)小三角形,如果分得的兩個(gè)小三角形中有一個(gè)為等腰三角形,另一個(gè)與原三角形相似,我們把這條線段叫做這個(gè)三角形的完美分割線。
(1)如圖1,在△ABC中,CD為角平分線,∠A=40°,∠B=60°,求證:CD為△ABC的完美分割線;
(2)在△ABC中,∠A=48°,CD是△ABC的完美分割線,且△ACD為等腰三角形,求∠ACB的度數(shù);
(3)如圖2,△ABC中,AC=2,BC=,CD是△ABC的完美分割線,且△ACD是以CD為底邊的等腰三角形,求完美分割線CD的長(zhǎng)。
【答案】(1)詳見(jiàn)解析;(2)∠ACB=96°或114°;(3)CD=.
【解析】
試題分析:(1)由∠A=40°,∠B=60°可得∠ACB=80°,即△ABC不是等腰三角形,再判定△ACD是等腰三角形,△BCD∽△BAC,即可得CD為△ABC的完美分割線;(2)分AD=CD,AD=AC,AC=CD三種情況,根據(jù)這三種情況分別求出∠ACB的度數(shù),不合題意的舍去;(3)由△BCD∽△BAC可得,設(shè)BD=x,代入可得,由于x>0,即可知x=-1.再由△BCD∽△BAC,所以,解得CD=.
試題解析:(1)∵∠A=40°,∠B=60°,
∴∠ACB=80°,
∴△ABC不是等腰三角形,
又因CD為角平分線,
∴∠ACD=∠BCD=∠ABC=40°,
∴∠ACD=∠A=40°,
∴△ACD是等腰三角形,
∵∠BCD=∠A=40°,∠B=∠B,
∴△BCD∽△BAC,
∴CD為△ABC的完美分割線;
(2)當(dāng)AD=CD時(shí)(如圖①),∠ACD=∠A=48°,
∵△BDC∽△BCA,
∴∠BCD=∠A=48°,
∴∠ACB=∠ACD+∠BCD=96°;
當(dāng)AD=AC時(shí)(如圖②),∠ACD=∠ADC=,
∵△BDC∽△BCA,
∴∠BCD=∠A=48°,
∴∠ACB=∠ACD+∠BCD=114°;
當(dāng)AC=CD時(shí)(如圖③),∠ACD=∠A=48°,
∵△BDC∽△BCA,
∴∠BCD=∠A=48°,
∵∠ADC>∠BCD,矛盾,舍去.
∴∠ACB=96°或114°;
(3)由已知AC=AD=2,
∵△BCD∽△BAC,
∴,
設(shè)BD=x
∴
解得x=-1±,
∵x>0,
∴x=-1.
∵△BCD∽△BAC,
∴,
∴CD=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2016四川省樂(lè)山市第16題)在直角坐標(biāo)系xOy中,對(duì)于點(diǎn)P(x,y)和Q(x,y′),給出如下定義:若,則稱點(diǎn)Q為點(diǎn)P的“可控變點(diǎn)”.
例如:點(diǎn)(1,2)的“可控變點(diǎn)”為點(diǎn)(1,2),點(diǎn)(﹣1,3)的“可控變點(diǎn)”為點(diǎn)(﹣1,﹣3).
(1)若點(diǎn)(﹣1,﹣2)是一次函數(shù)圖象上點(diǎn)M的“可控變點(diǎn)”,則點(diǎn)M的坐標(biāo)為 ;
(2)若點(diǎn)P在函數(shù)()的圖象上,其“可控變點(diǎn)”Q的縱坐標(biāo)y′的取值范圍是,則實(shí)數(shù)a的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題探究:
1.新知學(xué)習(xí)
若把將一個(gè)平面圖形分為面積相等的兩個(gè)部分的直線叫做該平面圖形的“面線”,其“面線”被該平面圖形截得的線段叫做該平面圖形的“面徑”(例如圓的直徑就是圓的“面徑”).
2.解決問(wèn)題
已知等邊三角形ABC的邊長(zhǎng)為2.
(1)如圖一,若AD⊥BC,垂足為D,試說(shuō)明AD是△ABC的一條面徑,并求AD的長(zhǎng);
(2)如圖二,若ME∥BC,且ME是△ABC的一條面徑,求面徑ME的長(zhǎng);
(3)如圖三,已知D為BC的中點(diǎn),連接AD,M為AB上的一點(diǎn)(0<AM<1),E是DC上的一點(diǎn),連接ME,ME與AD交于點(diǎn)O,且S△MOA=S△DOE.
①求證:ME是△ABC的面徑;
②連接AE,求證:MD∥AE;
(4)請(qǐng)你猜測(cè)等邊三角形ABC的面徑長(zhǎng)l的取值范圍(直接寫(xiě)出結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有5條線段,它們的長(zhǎng)度分別為1cm,2cm,3cm,4cm,5cm,以其中三條線段為邊長(zhǎng),可組成不同的三角形的個(gè)數(shù)為( )
A.3
B.4
C.5
D.6
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列每一組數(shù)據(jù)中的三個(gè)數(shù)值分別為三角形的三邊長(zhǎng),不能構(gòu)成直角三角形的是( )
A.3、4、5B.6、8、10C.5、12、13D.5、5、7
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列從左邊到右邊的變形,是因式分解的是( )
A.(3-x)(3+x)=9-x2
B.x2+2x+1=x(x+1)+1
C.a2b+ab2=ab(a+b)
D.(a-b)(n-m)=(b-a)(n-m)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】國(guó)慶放假時(shí),小明一家三口一起乘小轎車(chē)去鄉(xiāng)下探望爺爺、奶奶和外公、外婆。早上從家里出發(fā),向東走了6千米到超市買(mǎi)東西,然后又向東走了1.5千米到爺爺家,中午從爺爺家出發(fā)向西走了12千米到外公家,晚上返回家里。
(1)若以家為原點(diǎn),向東為正方向,用1個(gè)單位長(zhǎng)度表示1千米,請(qǐng)將超市、爺爺家和外公家的位置在下面數(shù)軸上分別用點(diǎn)A、B、C表示出來(lái);
(2)問(wèn)超市A和外公家C相距多少千米?
(3)若小轎車(chē)每千米耗油0.08升,求小明一家從出發(fā)到返回家所經(jīng)歷路程小車(chē)的耗油量。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)多邊形的每一個(gè)外角都等于它相鄰的內(nèi)角的一半,則這個(gè)多邊形的邊數(shù)是( )
A.3B.4C.5D.6
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某一出租車(chē)一天下午以鼓樓為出發(fā)地在東西方向營(yíng)運(yùn),向東為正,向西為負(fù),行車(chē)?yán)锍蹋▎挝唬?/span>km)依先后次序記錄如下:+2、 、 、 +4、 、 +6、 、。
(1)將最后一名乘客送到目的地,出租車(chē)離鼓樓出發(fā)點(diǎn)多遠(yuǎn)?在鼓樓的什么方向?
(2)若每千米的價(jià)格為2.4元,司機(jī)一個(gè)下午的營(yíng)業(yè)額是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com