【題目】如圖,點A在x軸的正半軸上,點B在反比例函數(shù)y=(k>0,x>0)的圖象上,延長AB交該函數(shù)圖象于另一點C,BC=3AB,點D也在該函數(shù)的圖象上,BD=BC,以BC,BD為邊構造CBDE,若點O,B,E在同一條直線上,且CBDE的周長為k,則AB的長為_____.
科目:初中數(shù)學 來源: 題型:
【題目】快、慢兩車分別從相距480千米路程的甲、乙兩地同時出發(fā),勻速行駛,先相向而行,途中慢車因故停留1小時,然后以原速度繼續(xù)向甲地行駛,到達甲地后停止行駛;快車到達乙地后,立即按原路原速返回甲地,(快車掉頭的時間忽略不計),快、慢兩車距乙地的路程y(千米)與所用時間x(小時)之間的函數(shù)圖象如圖.快車到達甲地時,慢車距離甲地__米.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,∠BCD=110°,AB的垂直平分線交對角線AC于點F,E為垂足,連接DF,則∠CDF等于( )
A. 15° B. 25° C. 45° D. 55°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,點O是AC邊延長線上的一點,以點O為圓心的圓與射線AC交于點D和點H,過點D作DF∥AB,DF交⊙O于點F,交BC邊于點B,且BF=BE.
(1)判斷直線BF與⊙O的位置關系,并說明理由;
(2)若∠A=30°,BC=8,EF=6,請求出⊙O的直徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將△ABC繞點A按逆時針方向旋轉至△AB′C′(B與B′,C與C′分別是對應頂點),使AB′⊥BC,B′C′分別交AC,BC于點D,E,已知AB=AC=5,BC=6,則DE的長為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c經(jīng)過A(﹣1,0),C(0,3)兩點,它的對稱軸與x軸交于點F,過點C作CE∥x軸交拋物線于另一點E,連結EF,AC.
(1)求該拋物線的表達式及點E的坐標;
(2)在線段EF上任取點P,連結OP,作點F關于直線OP的對稱點G,連結EG和PG,當點G恰好落到y(tǒng)軸上時,求△EGP的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠A=∠B,AE=BE,點D在AC邊上,∠1=∠2,AE和BD相交于點O.
(1)求證:△AEC≌△BED;
(2)若∠1=42°,求∠BDE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖①,在Rt△ABC中,∠ABC=90°,BD⊥AC于點D,且AB=5,AD=4,在AD上取一點G,使AG=,點P是折線CB﹣BA上一動點,以PG為直徑作⊙O交AC于點E,連結PE.
(1)求sinC的值;
(2)當點P與點B重合時如圖②所示,⊙O交邊AB于點F,求證:∠EPG=∠FPG;
(3)點P在整個運動過程中:
①當BC或AB與⊙O相切時,求所有滿足條件的DE長;
②點P以圓心O為旋轉中心,順時針方向旋轉90°得到P′,當P′恰好落在AB邊上時,求△OPP′與△OGE的面積之比(請直接寫出答案).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AB=AC=5,BC=6,AD⊥BC,E、F分別為AC、AD上兩動點,連接CF、EF,則CF+EF的最小值為____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com